Do you want to publish a course? Click here

Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images

168   0   0.0 ( 0 )
 Added by Sai Bi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object from a sparse set of only six images captured by wide-baseline cameras under collocated point lighting. We first estimate per-view depth maps using a deep multi-view stereo network; these depth maps are used to coarsely align the different views. We propose a novel multi-view reflectance estimation network architecture that is trained to pool features from these coarsely aligned images and predict per-view spatially-varying diffuse albedo, surface normals, specular roughness and specular albedo. We do this by jointly optimizing the latent space of our multi-view reflectance network to minimize the photometric error between images rendered with our predictions and the input images. While previous state-of-the-art methods fail on such sparse acquisition setups, we demonstrate, via extensive experiments on synthetic and real data, that our method produces high-quality reconstructions that can be used to render photorealistic images.



rate research

Read More

We present a deep learning approach to reconstruct scene appearance from unstructured images captured under collocated point lighting. At the heart of Deep Reflectance Volumes is a novel volumetric scene representation consisting of opacity, surface normal and reflectance voxel grids. We present a novel physically-based differentiable volume ray marching framework to render these scene volumes under arbitrary viewpoint and lighting. This allows us to optimize the scene volumes to minimize the error between their rendered images and the captured images. Our method is able to reconstruct real scenes with challenging non-Lambertian reflectance and complex geometry with occlusions and shadowing. Moreover, it accurately generalizes to novel viewpoints and lighting, including non-collocated lighting, rendering photorealistic images that are significantly better than state-of-the-art mesh-based methods. We also show that our learned reflectance volumes are editable, allowing for modifying the materials of the captured scenes.
Recovering the 3D geometry of a purely texture-less object with generally unknown surface reflectance (e.g. non-Lambertian) is regarded as a challenging task in multi-view reconstruction. The major obstacle revolves around establishing cross-view correspondences where photometric constancy is violated. This paper proposes a simple and practical solution to overcome this challenge based on a co-located camera-light scanner device. Unlike existing solutions, we do not explicitly solve for correspondence. Instead, we argue the problem is generally well-posed by multi-view geometrical and photometric constraints, and can be solved from a small number of input views. We formulate the reconstruction task as a joint energy minimization over the surface geometry and reflectance. Despite this energy is highly non-convex, we develop an optimization algorithm that robustly recovers globally optimal shape and reflectance even from a random initialization. Extensive experiments on both simulated and real data have validated our method, and possible future extensions are discussed.
Reconstructing object geometry and material from multiple views typically requires optimization. Differentiable path tracing is an appealing framework as it can reproduce complex appearance effects. However, it is difficult to use due to high computational cost. In this paper, we explore how to use differentiable ray tracing to refine an initial coarse mesh and per-mesh-facet material representation. In simulation, we find that it is possible to reconstruct fine geometric and material detail from low resolution input views, allowing high-quality reconstructions in a few hours despite the expense of path tracing. The reconstructions successfully disambiguate shading, shadow, and global illumination effects such as diffuse interreflection from material properties. We demonstrate the impact of different geometry initializations, including space carving, multi-view stereo, and 3D neural networks. Finally, with input captured using smartphone video and a consumer 360? camera for lighting estimation, we also show how to refine initial reconstructions of real-world objects in unconstrained environments.
Accurate 3D human pose estimation from single images is possible with sophisticated deep-net architectures that have been trained on very large datasets. However, this still leaves open the problem of capturing motions for which no such database exists. Manual annotation is tedious, slow, and error-prone. In this paper, we propose to replace most of the annotations by the use of multiple views, at training time only. Specifically, we train the system to predict the same pose in all views. Such a consistency constraint is necessary but not sufficient to predict accurate poses. We therefore complement it with a supervised loss aiming to predict the correct pose in a small set of labeled images, and with a regularization term that penalizes drift from initial predictions. Furthermore, we propose a method to estimate camera pose jointly with human pose, which lets us utilize multi-view footage where calibration is difficult, e.g., for pan-tilt or moving handheld cameras. We demonstrate the effectiveness of our approach on established benchmarks, as well as on a new Ski dataset with rotating cameras and expert ski motion, for which annotations are truly hard to obtain.
168 - Yuxiang Zhang , Zhe Li , Liang An 2021
Multi-person total motion capture is extremely challenging when it comes to handle severe occlusions, different reconstruction granularities from body to face and hands, drastically changing observation scales and fast body movements. To overcome these challenges above, we contribute a lightweight total motion capture system for multi-person interactive scenarios using only sparse multi-view cameras. By contributing a novel hand and face bootstrapping algorithm, our method is capable of efficient localization and accurate association of the hands and faces even on severe occluded occasions. We leverage both pose regression and keypoints detection methods and further propose a unified two-stage parametric fitting method for achieving pixel-aligned accuracy. Moreover, for extremely self-occluded poses and close interactions, a novel feedback mechanism is proposed to propagate the pixel-aligned reconstructions into the next frame for more accurate association. Overall, we propose the first light-weight total capture system and achieves fast, robust and accurate multi-person total motion capture performance. The results and experiments show that our method achieves more accurate results than existing methods under sparse-view setups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا