Do you want to publish a course? Click here

An Approach to Intelligent Pneumonia Detection and Integration

251   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Each year, over 2.5 million people, most of them in developed countries, die from pneumonia [1]. Since many studies have proved pneumonia is successfully treatable when timely and correctly diagnosed, many of diagnosis aids have been developed, with AI-based methods achieving high accuracies [2]. However, currently, the usage of AI in pneumonia detection is limited, in particular, due to challenges in generalizing a locally achieved result. In this report, we propose a roadmap for creating and integrating a system that attempts to solve this challenge. We also address various technical, legal, ethical, and logistical issues, with a blueprint of possible solutions.



rate research

Read More

Holding commercial negotiations and selecting the best supplier in supply chain management systems are among weaknesses of producers in production process. Therefore, applying intelligent systems may have an effective role in increased speed and improved quality in the selections .This paper introduces a system which tries to trade using multi-agents systems and holding negotiations between any agents. In this system, an intelligent agent is considered for each segment of chains which it tries to send order and receive the response with attendance in negotiation medium and communication with other agents .This paper introduces how to communicate between agents, characteristics of multi-agent and standard registration medium of each agent in the environment. JADE (Java Application Development Environment) was used for implementation and simulation of agents cooperation.
Advances in Data Science permeate every field of Transportation Science and Engineering, resulting in developments in the transportation sector that {are} data-driven. Nowadays, Intelligent Transportation Systems (ITS) could be arguably approached as a ``story intensively producing and consuming large amounts of data. A~diversity of sensing devices densely spread over the infrastructure, vehicles or the travelers personal devices act as sources of data flows that are eventually fed {into} software running on automatic devices, actuators or control systems producing, in~turn, complex information flows {among} users, traffic managers, data analysts, traffic modeling scientists, etc. These~information flows provide enormous opportunities to improve model development and decision-making. This work aims to describe how data, coming from diverse ITS sources, can be used to learn and adapt data-driven models for efficiently operating ITS assets, systems and processes; in~other words, for data-based models to fully become emph{actionable}. Grounded in this described data modeling pipeline for ITS, we~define the characteristics, engineering requisites and challenges intrinsic to its three compounding stages, namely, data fusion, adaptive learning and model evaluation. We~deliberately generalize model learning to be adaptive, since, in~the core of our paper is the firm conviction that most learners will have to adapt to the ever-changing phenomenon scenario underlying the majority of ITS applications. Finally, we~provide a prospect of current research lines within Data Science that can bring notable advances to data-based ITS modeling, which will eventually bridge the gap towards the practicality and actionability of such models.
69 - Wuwei Lan , Yanyan Xu , Bin Zhao 2019
Travel time estimation is a crucial task for not only personal travel scheduling but also city planning. Previous methods focus on modeling toward road segments or sub-paths, then summing up for a final prediction, which have been recently replaced by deep neural models with end-to-end training. Usually, these methods are based on explicit feature representations, including spatio-temporal features, traffic states, etc. Here, we argue that the local traffic condition is closely tied up with the land-use and built environment, i.e., metro stations, arterial roads, intersections, commercial area, residential area, and etc, yet the relation is time-varying and too complicated to model explicitly and efficiently. Thus, this paper proposes an end-to-end multi-task deep neural model, named Deep Image to Time (DeepI2T), to learn the travel time mainly from the built environment images, a.k.a. the morphological layout images, and showoff the new state-of-the-art performance on real-world datasets in two cities. Moreover, our model is designed to tackle both path-aware and path-blind scenarios in the testing phase. This work opens up new opportunities of using the publicly available morphological layout images as considerable information in multiple geography-related smart city applications.
The manpower scheduling problem is a critical research field in the resource management area. Based on the existing studies on scheduling problem solutions, this paper transforms the manpower scheduling problem into a combinational optimization problem under multi-constraint conditions from a new perspective. It also uses logical paradigms to build a mathematical model for problem solution and an improved multi-dimensional evolution algorithm for solving the model. Moreover, the constraints discussed in this paper basically cover all the requirements of human resource coordination in modern society and are supported by our experiment results. In the discussion part, we compare our model with other heuristic algorithms or linear programming methods and prove that the model proposed in this paper makes a 25.7% increase in efficiency and a 17% increase in accuracy at most. In addition, to the numerical solution of the manpower scheduling problem, this paper also studies the algorithm for scheduling task list generation and the method of displaying scheduling results. As a result, we not only provide various modifications for the basic algorithm to solve different condition problems but also propose a new algorithm that increases at least 28.91% in time efficiency by comparing with different baseline models.
56 - G. Bertotti 1999
A general formulation of scalar hysteresis is proposed. This formulation is based on two steps. First, a generating function g(x) is associated with an individual system, and a hysteresis evolution operator is defined by an appropriate envelope construction applied to g(x), inspired by the overdamped dynamics of systems evolving in multistable free energy landscapes. Second, the average hysteresis response of an ensemble of such systems is expressed as a functional integral over the space G of all admissible generating functions, under the assumption that an appropriate measure m has been introduced in G. The consequences of the formulation are analyzed in detail in the case where the measure m is generated by a continuous, Markovian stochastic process. The calculation of the hysteresis properties of the ensemble is reduced to the solution of the level-crossing problem for the stochastic process. In particular, it is shown that, when the process is translationally invariant (homogeneous), the ensuing hysteresis properties can be exactly described by the Preisach model of hysteresis, and the associated Preisach distribution is expressed in closed analytic form in terms of the drift and diffusion parameters of the Markovian process. Possible applications of the formulation are suggested, concerning the interpretation of magnetic hysteresis due to domain wall motion in quenched-in disorder, and the interpretation of critical state models of superconducting hysteresis.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا