Do you want to publish a course? Click here

Seed the Views: Hierarchical Semantic Alignment for Contrastive Representation Learning

307   0   0.0 ( 0 )
 Added by Haohang Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Self-supervised learning based on instance discrimination has shown remarkable progress. In particular, contrastive learning, which regards each image as well as its augmentations as an individual class and tries to distinguish them from all other images, has been verified effective for representation learning. However, pushing away two images that are de facto similar is suboptimal for general representation. In this paper, we propose a hierarchical semantic alignment strategy via expanding the views generated by a single image to textbf{Cross-samples and Multi-level} representation, and models the invariance to semantically similar images in a hierarchical way. This is achieved by extending the contrastive loss to allow for multiple positives per anchor, and explicitly pulling semantically similar images/patches together at different layers of the network. Our method, termed as CsMl, has the ability to integrate multi-level visual representations across samples in a robust way. CsMl is applicable to current contrastive learning based methods and consistently improves the performance. Notably, using the moco as an instantiation, CsMl achieves a textbf{76.6% }top-1 accuracy with linear evaluation using ResNet-50 as backbone, and textbf{66.7%} and textbf{75.1%} top-1 accuracy with only 1% and 10% labels, respectively. textbf{All these numbers set the new state-of-the-art.}



rate research

Read More

Contrastive learning between multiple views of the data has recently achieved state of the art performance in the field of self-supervised representation learning. Despite its success, the influence of different view choices has been less studied. In this paper, we use theoretical and empirical analysis to better understand the importance of view selection, and argue that we should reduce the mutual information (MI) between views while keeping task-relevant information intact. To verify this hypothesis, we devise unsupervised and semi-supervised frameworks that learn effective views by aiming to reduce their MI. We also consider data augmentation as a way to reduce MI, and show that increasing data augmentation indeed leads to decreasing MI and improves downstream classification accuracy. As a by-product, we achieve a new state-of-the-art accuracy on unsupervised pre-training for ImageNet classification ($73%$ top-1 linear readout with a ResNet-50). In addition, transferring our models to PASCAL VOC object detection and COCO instance segmentation consistently outperforms supervised pre-training. Code:http://github.com/HobbitLong/PyContrast
We present a collaborative learning method called Mutual Contrastive Learning (MCL) for general visual representation learning. The core idea of MCL is to perform mutual interaction and transfer of contrastive distributions among a cohort of models. Benefiting from MCL, each model can learn extra contrastive knowledge from others, leading to more meaningful feature representations for visual recognition tasks. We emphasize that MCL is conceptually simple yet empirically powerful. It is a generic framework that can be applied to both supervised and self-supervised representation learning. Experimental results on supervised and self-supervised image classification, transfer learning and few-shot learning show that MCL can lead to consistent performance gains, demonstrating that MCL can guide the network to generate better feature representations.
Collecting labeled data for the task of semantic segmentation is expensive and time-consuming, as it requires dense pixel-level annotations. While recent Convolutional Neural Network (CNN) based semantic segmentation approaches have achieved impressive results by using large amounts of labeled training data, their performance drops significantly as the amount of labeled data decreases. This happens because deep CNNs trained with the de facto cross-entropy loss can easily overfit to small amounts of labeled data. To address this issue, we propose a simple and effective contrastive learning-based training strategy in which we first pretrain the network using a pixel-wise, label-based contrastive loss, and then fine-tune it using the cross-entropy loss. This approach increases intra-class compactness and inter-class separability, thereby resulting in a better pixel classifier. We demonstrate the effectiveness of the proposed training strategy using the Cityscapes and PASCAL VOC 2012 segmentation datasets. Our results show that pretraining with the proposed contrastive loss results in large performance gains (more than 20% absolute improvement in some settings) when the amount of labeled data is limited. In many settings, the proposed contrastive pretraining strategy, which does not use any additional data, is able to match or outperform the widely-used ImageNet pretraining strategy that uses more than a million additional labeled images.
Object categories inherently form a hierarchy with different levels of concept abstraction, especially for fine-grained categories. For example, birds (Aves) can be categorized according to a four-level hierarchy of order, family, genus, and species. This hierarchy encodes rich correlations among various categories across different levels, which can effectively regularize the semantic space and thus make prediction less ambiguous. However, previous studies of fine-grained image recognition primarily focus on categories of one certain level and usually overlook this correlation information. In this work, we investigate simultaneously predicting categories of different levels in the hierarchy and integrating this structured correlation information into the deep neural network by developing a novel Hierarchical Semantic Embedding (HSE) framework. Specifically, the HSE framework sequentially predicts the category score vector of each level in the hierarchy, from highest to lowest. At each level, it incorporates the predicted score vector of the higher level as prior knowledge to learn finer-grained feature representation. During training, the predicted score vector of the higher level is also employed to regularize label prediction by using it as soft targets of corresponding sub-categories. To evaluate the proposed framework, we organize the 200 bird species of the Caltech-UCSD birds dataset with the four-level category hierarchy and construct a large-scale butterfly dataset that also covers four level categories. Extensive experiments on these two and the newly-released VegFru datasets demonstrate the superiority of our HSE framework over the baseline methods and existing competitors.
208 - Xin Yuan , Zhe Lin , Jason Kuen 2021
We develop an approach to learning visual representations that embraces multimodal data, driven by a combination of intra- and inter-modal similarity preservation objectives. Unlike existing visual pre-training methods, which solve a proxy prediction task in a single domain, our method exploits intrinsic data properties within each modality and semantic information from cross-modal correlation simultaneously, hence improving the quality of learned visual representations. By including multimodal training in a unified framework with different types of contrastive losses, our method can learn more powerful and generic visual features. We first train our model on COCO and evaluate the learned visual representations on various downstream tasks including image classification, object detection, and instance segmentation. For example, the visual representations pre-trained on COCO by our method achieve state-of-the-art top-1 validation accuracy of $55.3%$ on ImageNet classification, under the common transfer protocol. We also evaluate our method on the large-scale Stock images dataset and show its effectiveness on multi-label image tagging, and cross-modal retrieval tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا