Do you want to publish a course? Click here

What Makes for Good Views for Contrastive Learning?

108   0   0.0 ( 0 )
 Added by Yonglong Tian
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Contrastive learning between multiple views of the data has recently achieved state of the art performance in the field of self-supervised representation learning. Despite its success, the influence of different view choices has been less studied. In this paper, we use theoretical and empirical analysis to better understand the importance of view selection, and argue that we should reduce the mutual information (MI) between views while keeping task-relevant information intact. To verify this hypothesis, we devise unsupervised and semi-supervised frameworks that learn effective views by aiming to reduce their MI. We also consider data augmentation as a way to reduce MI, and show that increasing data augmentation indeed leads to decreasing MI and improves downstream classification accuracy. As a by-product, we achieve a new state-of-the-art accuracy on unsupervised pre-training for ImageNet classification ($73%$ top-1 linear readout with a ResNet-50). In addition, transferring our models to PASCAL VOC object detection and COCO instance segmentation consistently outperforms supervised pre-training. Code:http://github.com/HobbitLong/PyContrast



rate research

Read More

Contrastive visual pretraining based on the instance discrimination pretext task has made significant progress. Notably, recent work on unsupervised pretraining has shown to surpass the supervised counterpart for finetuning downstream applications such as object detection and segmentation. It comes as a surprise that image annotations would be better left unused for transfer learning. In this work, we investigate the following problems: What makes instance discrimination pretraining good for transfer learning? What knowledge is actually learned and transferred from these models? From this understanding of instance discrimination, how can we better exploit human annotation labels for pretraining? Our findings are threefold. First, what truly matters for the transfer is low-level and mid-level representations, not high-level representations. Second, the intra-category invariance enforced by the traditional supervised model weakens transferability by increasing task misalignment. Finally, supervised pretraining can be strengthened by following an exemplar-based approach without explicit constraints among the instances within the same category.
GPT-$3$ has attracted lots of attention due to its superior performance across a wide range of NLP tasks, especially with its powerful and versatile in-context few-shot learning ability. Despite its success, we found that the empirical results of GPT-$3$ depend heavily on the choice of in-context examples. In this work, we investigate whether there are more effective strategies for judiciously selecting in-context examples (relative to random sampling) that better leverage GPT-$3$s few-shot capabilities. Inspired by the recent success of leveraging a retrieval module to augment large-scale neural network models, we propose to retrieve examples that are semantically-similar to a test sample to formulate its corresponding prompt. Intuitively, the in-context examples selected with such a strategy may serve as more informative inputs to unleash GPT-$3$s extensive knowledge. We evaluate the proposed approach on several natural language understanding and generation benchmarks, where the retrieval-based prompt selection approach consistently outperforms the random baseline. Moreover, it is observed that the sentence encoders fine-tuned on task-related datasets yield even more helpful retrieval results. Notably, significant gains are observed on tasks such as table-to-text generation (41.9% on the ToTTo dataset) and open-domain question answering (45.5% on the NQ dataset). We hope our investigation could help understand the behaviors of GPT-$3$ and large-scale pre-trained LMs in general and enhance their few-shot capabilities.
Self-supervised learning based on instance discrimination has shown remarkable progress. In particular, contrastive learning, which regards each image as well as its augmentations as an individual class and tries to distinguish them from all other images, has been verified effective for representation learning. However, pushing away two images that are de facto similar is suboptimal for general representation. In this paper, we propose a hierarchical semantic alignment strategy via expanding the views generated by a single image to textbf{Cross-samples and Multi-level} representation, and models the invariance to semantically similar images in a hierarchical way. This is achieved by extending the contrastive loss to allow for multiple positives per anchor, and explicitly pulling semantically similar images/patches together at different layers of the network. Our method, termed as CsMl, has the ability to integrate multi-level visual representations across samples in a robust way. CsMl is applicable to current contrastive learning based methods and consistently improves the performance. Notably, using the moco as an instantiation, CsMl achieves a textbf{76.6% }top-1 accuracy with linear evaluation using ResNet-50 as backbone, and textbf{66.7%} and textbf{75.1%} top-1 accuracy with only 1% and 10% labels, respectively. textbf{All these numbers set the new state-of-the-art.}
Recent studies indicate that hierarchical Vision Transformer with a macro architecture of interleaved non-overlapped window-based self-attention & shifted-window operation is able to achieve state-of-the-art performance in various visual recognition tasks, and challenges the ubiquitous convolutional neural networks (CNNs) using densely slid kernels. Most follow-up works attempt to replace the shifted-window operation with other kinds of cross-window communication paradigms, while treating self-attention as the de-facto standard for window-based information aggregation. In this manuscript, we question whether self-attention is the only choice for hierarchical Vision Transformer to attain strong performance, and the effects of different kinds of cross-window communication. To this end, we replace self-attention layers with embarrassingly simple linear mapping layers, and the resulting proof-of-concept architecture termed as LinMapper can achieve very strong performance in ImageNet-1k image recognition. Moreover, we find that LinMapper is able to better leverage the pre-trained representations from image recognition and demonstrates excellent transfer learning properties on downstream dense prediction tasks such as object detection and instance segmentation. We also experiment with other alternatives to self-attention for content aggregation inside each non-overlapped window under different cross-window communication approaches, which all give similar competitive results. Our study reveals that the textbf{macro architecture} of Swin model families, other than specific aggregation layers or specific means of cross-window communication, may be more responsible for its strong performance and is the real challenger to the ubiquitous CNNs dense sliding window paradigm. Code and models will be publicly available to facilitate future research.
71 - Junjie Hu , Yu Cheng , Zhe Gan 2019
Previous storytelling approaches mostly focused on optimizing traditional metrics such as BLEU, ROUGE and CIDEr. In this paper, we re-examine this problem from a different angle, by looking deep into what defines a realistically-natural and topically-coherent story. To this end, we propose three assessment criteria: relevance, coherence and expressiveness, which we observe through empirical analysis could constitute a high-quality story to the human eye. Following this quality guideline, we propose a reinforcement learning framework, ReCo-RL, with reward functions designed to capture the essence of these quality criteria. Experiments on the Visual Storytelling Dataset (VIST) with both automatic and human evaluations demonstrate that our ReCo-RL model achieves better performance than state-of-the-art baselines on both traditional metrics and the proposed new criteria.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا