Do you want to publish a course? Click here

Malware Detection using Artificial Bee Colony Algorithm

156   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Malware detection has become a challenging task due to the increase in the number of malware families. Universal malware detection algorithms that can detect all the malware families are needed to make the whole process feasible. However, the more universal an algorithm is, the higher number of feature dimensions it needs to work with, and that inevitably causes the emerging problem of Curse of Dimensionality (CoD). Besides, it is also difficult to make this solution work due to the real-time behavior of malware analysis. In this paper, we address this problem and aim to propose a feature selection based malware detection algorithm using an evolutionary algorithm that is referred to as Artificial Bee Colony (ABC). The proposed algorithm enables researchers to decrease the feature dimension and as a result, boost the process of malware detection. The experimental results reveal that the proposed method outperforms the state-of-the-art.



rate research

Read More

138 - Paul Maxwell , David Niblick , 2020
Cybersecurity continues to be a difficult issue for society especially as the number of networked systems grows. Techniques to protect these systems range from rules-based to artificial intelligence-based intrusion detection systems and anti-virus tools. These systems rely upon the information contained in the network packets and download executables to function. Side channel information leaked from hardware has been shown to reveal secret information in systems such as encryption keys. This work demonstrates that side channel information can be used to detect malware running on a computing platform without access to the code involved.
Recently, cyber-attacks have been extensively seen due to the everlasting increase of malware in the cyber world. These attacks cause irreversible damage not only to end-users but also to corporate computer systems. Ransomware attacks such as WannaCry and Petya specifically targets to make critical infrastructures such as airports and rendered operational processes inoperable. Hence, it has attracted increasing attention in terms of volume, versatility, and intricacy. The most important feature of this type of malware is that they change shape as they propagate from one computer to another. Since standard signature-based detection software fails to identify this type of malware because they have different characteristics on each contaminated computer. This paper aims at providing an image augmentation enhanced deep convolutional neural network (CNN) models for the detection of malware families in a metamorphic malware environment. The main contributions of the papers model structure consist of three components, including image generation from malware samples, image augmentation, and the last one is classifying the malware families by using a convolutional neural network model. In the first component, the collected malware samples are converted binary representation to 3-channel images using windowing technique. The second component of the system create the augmented version of the images, and the last component builds a classification model. In this study, five different deep convolutional neural network model for malware family detection is used.
Android malware has been on the rise in recent years due to the increasing popularity of Android and the proliferation of third party application markets. Emerging Android malware families are increasingly adopting sophisticated detection avoidance techniques and this calls for more effective approaches for Android malware detection. Hence, in this paper we present and evaluate an n-gram opcode features based approach that utilizes machine learning to identify and categorize Android malware. This approach enables automated feature discovery without relying on prior expert or domain knowledge for pre-determined features. Furthermore, by using a data segmentation technique for feature selection, our analysis is able to scale up to 10-gram opcodes. Our experiments on a dataset of 2520 samples showed an f-measure of 98% using the n-gram opcode based approach. We also provide empirical findings that illustrate factors that have probable impact on the overall n-gram opcodes performance trends.
208 - Rui Zhu , Chenglin Li , Di Niu 2018
With the growth of mobile devices and applications, the number of malicious software, or malware, is rapidly increasing in recent years, which calls for the development of advanced and effective malware detection approaches. Traditional methods such as signature-based ones cannot defend users from an increasing number of new types of malware or rapid malware behavior changes. In this paper, we propose a new Android malware detection approach based on deep learning and static analysis. Instead of using Application Programming Interfaces (APIs) only, we further analyze the source code of Android applications and create their higher-level graphical semantics, which makes it harder for attackers to evade detection. In particular, we use a call graph from method invocations in an Android application to represent the application, and further analyze method attributes to form a structured Program Representation Graph (PRG) with node attributes. Then, we use a graph convolutional network (GCN) to yield a graph representation of the application by embedding the entire graph into a dense vector, and classify whether it is a malware or not. To efficiently train such a graph convolutional network, we propose a batch training scheme that allows multiple heterogeneous graphs to be input as a batch. To the best of our knowledge, this is the first work to use graph representation learning for malware detection. We conduct extensive experiments from real-world sample collections and demonstrate that our developed system outperforms multiple other existing malware detection techniques.
Large software platforms (e.g., mobile app stores, social media, email service providers) must ensure that files on their platform do not contain malicious code. Platform hosts use security tools to analyze those files for potential malware. However, given the expensive runtimes of tools coupled with the large number of exchanged files, platforms are not able to run all tools on every incoming file. Moreover, malicious parties look to find gaps in the coverage of the analysis tools, and exchange files containing malware that exploits these vulnerabilities. To address this problem, we present a novel approach that models the relationship between malicious parties and the security analyst as a leader-follower Stackelberg security game. To estimate the parameters of our model, we have combined the information from the VirusTotal dataset with the more detailed reports from the National Vulnerability Database. Compared to a set of natural baselines, we show that our model computes an optimal randomization over sets of available security analysis tools.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا