Do you want to publish a course? Click here

Data Augmentation Based Malware Detection using Convolutional Neural Networks

127   0   0.0 ( 0 )
 Added by Ferhat Ozgur Catak
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recently, cyber-attacks have been extensively seen due to the everlasting increase of malware in the cyber world. These attacks cause irreversible damage not only to end-users but also to corporate computer systems. Ransomware attacks such as WannaCry and Petya specifically targets to make critical infrastructures such as airports and rendered operational processes inoperable. Hence, it has attracted increasing attention in terms of volume, versatility, and intricacy. The most important feature of this type of malware is that they change shape as they propagate from one computer to another. Since standard signature-based detection software fails to identify this type of malware because they have different characteristics on each contaminated computer. This paper aims at providing an image augmentation enhanced deep convolutional neural network (CNN) models for the detection of malware families in a metamorphic malware environment. The main contributions of the papers model structure consist of three components, including image generation from malware samples, image augmentation, and the last one is classifying the malware families by using a convolutional neural network model. In the first component, the collected malware samples are converted binary representation to 3-channel images using windowing technique. The second component of the system create the augmented version of the images, and the last component builds a classification model. In this study, five different deep convolutional neural network model for malware family detection is used.



rate research

Read More

The persistent growth in phishing and the rising volume of phishing websites has led to individuals and organizations worldwide becoming increasingly exposed to various cyber-attacks. Consequently, more effective phishing detection is required for improved cyber defence. Hence, in this paper we present a deep learning-based approach to enable high accuracy detection of phishing sites. The proposed approach utilizes convolutional neural networks (CNN) for high accuracy classification to distinguish genuine sites from phishing sites. We evaluate the models using a dataset obtained from 6,157 genuine and 4,898 phishing websites. Based on the results of extensive experiments, our CNN based models proved to be highly effective in detecting unknown phishing sites. Furthermore, the CNN based approach performed better than traditional machine learning classifiers evaluated on the same dataset, reaching 98.2% phishing detection rate with an F1-score of 0.976. The method presented in this paper compares favourably to the state-of-the art in deep learning based phishing website detection.
Malware detection has become a challenging task due to the increase in the number of malware families. Universal malware detection algorithms that can detect all the malware families are needed to make the whole process feasible. However, the more universal an algorithm is, the higher number of feature dimensions it needs to work with, and that inevitably causes the emerging problem of Curse of Dimensionality (CoD). Besides, it is also difficult to make this solution work due to the real-time behavior of malware analysis. In this paper, we address this problem and aim to propose a feature selection based malware detection algorithm using an evolutionary algorithm that is referred to as Artificial Bee Colony (ABC). The proposed algorithm enables researchers to decrease the feature dimension and as a result, boost the process of malware detection. The experimental results reveal that the proposed method outperforms the state-of-the-art.
Static malware analysis is well-suited to endpoint anti-virus systems as it can be conducted quickly by examining the features of an executable piece of code and matching it to previously observed malicious code. However, static code analysis can be vulnerable to code obfuscation techniques. Behavioural data collected during file execution is more difficult to obfuscate, but takes a relatively long time to capture - typically up to 5 minutes, meaning the malicious payload has likely already been delivered by the time it is detected. In this paper we investigate the possibility of predicting whether or not an executable is malicious based on a short snapshot of behavioural data. We find that an ensemble of recurrent neural networks are able to predict whether an executable is malicious or benign within the first 5 seconds of execution with 94% accuracy. This is the first time general types of malicious file have been predicted to be malicious during execution rather than using a complete activity log file post-execution, and enables cyber security endpoint protection to be advanced to use behavioural data for blocking malicious payloads rather than detecting them post-execution and having to repair the damage.
Android, being the most widespread mobile operating systems is increasingly becoming a target for malware. Malicious apps designed to turn mobile devices into bots that may form part of a larger botnet have become quite common, thus posing a serious threat. This calls for more effective methods to detect botnets on the Android platform. Hence, in this paper, we present a deep learning approach for Android botnet detection based on Convolutional Neural Networks (CNN). Our proposed botnet detection system is implemented as a CNN-based model that is trained on 342 static app features to distinguish between botnet apps and normal apps. The trained botnet detection model was evaluated on a set of 6,802 real applications containing 1,929 botnets from the publicly available ISCX botnet dataset. The results show that our CNN-based approach had the highest overall prediction accuracy compared to other popular machine learning classifiers. Furthermore, the performance results observed from our model were better than those reported in previous studies on machine learning based Android botnet detection.
There is a warning light for the loss of plant habitats worldwide that entails concerted efforts to conserve plant biodiversity. Thus, plant species classification is of crucial importance to address this environmental challenge. In recent years, there is a considerable increase in the number of studies related to plant taxonomy. While some researchers try to improve their recognition performance using novel approaches, others concentrate on computational optimization for their framework. In addition, a few studies are diving into feature extraction to gain significantly in terms of accuracy. In this paper, we propose an effective method for the leaf recognition problem. In our proposed approach, a leaf goes through some pre-processing to extract its refined color image, vein image, xy-projection histogram, handcrafted shape, texture features, and Fourier descriptors. These attributes are then transformed into a better representation by neural network-based encoders before a support vector machine (SVM) model is utilized to classify different leaves. Overall, our approach performs a state-of-the-art result on the Flavia leaf dataset, achieving the accuracy of 99.58% on test sets under random 10-fold cross-validation and bypassing the previous methods. We also release our codes (Scripts are available at https://github.com/dinhvietcuong1996/LeafRecognition) for contributing to the research community in the leaf classification problem.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا