Do you want to publish a course? Click here

Android Malware Detection using Large-scale Network Representation Learning

209   0   0.0 ( 0 )
 Added by Rui Zhu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

With the growth of mobile devices and applications, the number of malicious software, or malware, is rapidly increasing in recent years, which calls for the development of advanced and effective malware detection approaches. Traditional methods such as signature-based ones cannot defend users from an increasing number of new types of malware or rapid malware behavior changes. In this paper, we propose a new Android malware detection approach based on deep learning and static analysis. Instead of using Application Programming Interfaces (APIs) only, we further analyze the source code of Android applications and create their higher-level graphical semantics, which makes it harder for attackers to evade detection. In particular, we use a call graph from method invocations in an Android application to represent the application, and further analyze method attributes to form a structured Program Representation Graph (PRG) with node attributes. Then, we use a graph convolutional network (GCN) to yield a graph representation of the application by embedding the entire graph into a dense vector, and classify whether it is a malware or not. To efficiently train such a graph convolutional network, we propose a batch training scheme that allows multiple heterogeneous graphs to be input as a batch. To the best of our knowledge, this is the first work to use graph representation learning for malware detection. We conduct extensive experiments from real-world sample collections and demonstrate that our developed system outperforms multiple other existing malware detection techniques.



rate research

Read More

73 - Ji Wang , Qi Jing , Jianbo Gao 2019
For the dramatic increase of Android malware and low efficiency of manual check process, deep learning methods started to be an auxiliary means for Android malware detection these years. However, these models are highly dependent on the quality of datasets, and perform unsatisfactory results when the quality of training data is not good enough. In the real world, the quality of datasets without manually check cannot be guaranteed, even Google Play may contain malicious applications, which will cause the trained model failure. To address the challenge, we propose a robust Android malware detection approach based on selective ensemble learning, trying to provide an effective solution not that limited to the quality of datasets. The proposed model utilizes genetic algorithm to help find the best combination of the component learners and improve robustness of the model. Our results show that the proposed approach achieves a more robust performance than other approaches in the same area.
166 - Zhuo Ma , Haoran Ge , Zhuzhu Wang 2020
Android malware detection is a critical step towards building a security credible system. Especially, manual search for the potential malicious code has plagued program analysts for a long time. In this paper, we propose Droidetec, a deep learning based method for android malware detection and malicious code localization, to model an application program as a natural language sequence. Droidetec adopts a novel feature extraction method to derive behavior sequences from Android applications. Based on that, the bi-directional Long Short Term Memory network is utilized for malware detection. Each unit in the extracted behavior sequence is inventively represented as a vector, which allows Droidetec to automatically analyze the semantics of sequence segments and eventually find out the malicious code. Experiments with 9616 malicious and 11982 benign programs show that Droidetec reaches an accuracy of 97.22% and an F1-score of 98.21%. In all, Droidetec has a hit rate of 91% to properly find out malicious code segments.
Computer vision has witnessed several advances in recent years, with unprecedented performance provided by deep representation learning research. Image formats thus appear attractive to other fields such as malware detection, where deep learning on images alleviates the need for comprehensively hand-crafted features generalising to different malware variants. We postulate that this research direction could become the next frontier in Android malware detection, and therefore requires a clear roadmap to ensure that new approaches indeed bring novel contributions. We contribute with a first building block by developing and assessing a baseline pipeline for image-based malware detection with straightforward steps. We propose DexRay, which converts the bytecode of the app DEX files into grey-scale vector images and feeds them to a 1-dimensional Convolutional Neural Network model. We view DexRay as foundational due to the exceedingly basic nature of the design choices, allowing to infer what could be a minimal performance that can be obtained with image-based learning in malware detection. The performance of DexRay evaluated on over 158k apps demonstrates that, while simple, our approach is effective with a high detection rate(F1-score= 0.96). Finally, we investigate the impact of time decay and image-resizing on the performance of DexRay and assess its resilience to obfuscation. This work-in-progress paper contributes to the domain of Deep Learning based Malware detection by providing a sound, simple, yet effective approach (with available artefacts) that can be the basis to scope the many profound questions that will need to be investigated to fully develop this domain.
Android malware has been on the rise in recent years due to the increasing popularity of Android and the proliferation of third party application markets. Emerging Android malware families are increasingly adopting sophisticated detection avoidance techniques and this calls for more effective approaches for Android malware detection. Hence, in this paper we present and evaluate an n-gram opcode features based approach that utilizes machine learning to identify and categorize Android malware. This approach enables automated feature discovery without relying on prior expert or domain knowledge for pre-determined features. Furthermore, by using a data segmentation technique for feature selection, our analysis is able to scale up to 10-gram opcodes. Our experiments on a dataset of 2520 samples showed an f-measure of 98% using the n-gram opcode based approach. We also provide empirical findings that illustrate factors that have probable impact on the overall n-gram opcodes performance trends.
We present BPFroid -- a novel dynamic analysis framework for Android that uses the eBPF technology of the Linux kernel to continuously monitor events of user applications running on a real device. The monitored events are collected from different components of the Android software stack: internal kernel functions, system calls, native library functions, and the Java API framework. As BPFroid hooks these events in the kernel, a malware is unable to trivially bypass monitoring. Moreover, using eBPF doesnt require any change to the Android system or the monitored applications. We also present an analytical comparison of BPFroid to other malware detection methods and demonstrate its usage by developing novel signatures to detect suspicious behavior that are based on it. These signatures are then evaluated using real apps. We also demonstrate how BPFroid can be used to capture forensic artifacts for further investigation. Our results show that BPFroid successfully alerts in real time when a suspicious behavioral signature is detected, without incurring a significant runtime performance overhead.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا