Do you want to publish a course? Click here

Modeling the Statistics of the Cold Neutral Medium in Absorption-selected High-redshift Galaxies

89   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a statistical model of the selection function of cold neutral gas in high-redshift (z~2.5) absorption systems. The model is based on the canonical two-phase model of the neutral gas in the interstellar medium and contains only one parameter for which we do not have direct observational priors: namely the central pressure (P*) of an L* halo at z=2.5. Using observations of the fraction of cold gas absorption in strong HI-selected absorbers, we are able to constrain P*. The model simultaneously reproduces the column density distributions of HI and H$_2$, and we derive an expected total incidence of cold gas at z~2.5 of $l_{CNM} = 12times 10^{-3}$. Compared to recent measurements of the incidence of CI-selected absorbers (EW$_{CI,1560}$ > 0.4 {AA}), the value of $l_{CNM}$ from our model indicates that only ~15% of the total cold gas would lead to strong CI absorption (EW > 0.4 {AA}). Nevertheless, CI lines are extremely useful probes of the cold gas as they are relatively easy to detect and provide direct constraints on the physical conditions. Lastly, our model self-consistently reproduces the fraction of cold gas absorbers as a function of N(HI).



rate research

Read More

Dynamic and thermal processes regulate the structure of the multi-phase interstellar medium (ISM), and ultimately establish how galaxies evolve through star formation. Thus, to constrain ISM models and better understand the interplay of these processes, it is of great interest to measure the thermal pressure ($P_{rm th}$) of the diffuse, neutral gas. By combining [C II] 158 $mu$m, HI, and CO data from 31 galaxies selected from the Herschel KINGFISH sample, we have measured thermal pressures in 534 predominantly atomic regions with typical sizes of $sim$1 kiloparsec. We find a distribution of thermal pressures in the $P_{rm th}/ksim10^3-10^5$ K cm$^{-3}$ range. For a sub-sample of regions with conditions similar to those of the diffuse, neutral gas in the Galactic plane, we find thermal pressures that follow a log-normal distribution with a median value of $P_{rm th}/kapprox3600$ K cm$^{-3}$. These results are consistent with thermal pressure measurements using other observational methods. We find that $P_{rm th}$ increases with radiation field strength and star formation activity, as expected from the close link between the heating of the gas and the star formation rate. Our thermal pressure measurements fall in the regime where a two-phase ISM with cold and warm neutral medium could exist in pressure equilibrium. Finally, we find that the midplane thermal pressure of the diffuse gas is about $sim30$% of the vertical weight of the overlying ISM, consistent with results from hydrodynamical simulations of self-regulated star formation in galactic disks.
We report a deep Giant Metrewave Radio Telescope (GMRT) search for Galactic H{sc i} 21cm absorption towards the quasar B0438$-$436, yielding the detection of wide, weak H{sc i} 21cm absorption, with a velocity-integrated H{sc i} 21cm optical depth of $0.0188 pm 0.0036$~km~s$^{-1}$. Comparing this with the H{sc i} column density measured in the Parkes Galactic All-Sky Survey gives a column density-weighted harmonic mean spin temperature of $3760 pm 365$~K, one of the highest measured in the Galaxy. This is consistent with most of the H{sc i} along the sightline arising in the stable warm neutral medium (WNM). The low peak H{sc i} 21cm optical depth towards B0438$-$436 implies negligible self-absorption, allowing a multi-Gaussian joint decomposition of the H{sc i} 21cm absorption and emission spectra. This yields a gas kinetic temperature of $rm T_k leq (4910 pm 1900)$~K, and a spin temperature of $rm T_s = (1000 pm 345)$~K for the gas that gives rise to the H{sc i} 21cm absorption. Our data are consistent with the H{sc i} 21cm absorption arising from either the stable WNM, with $rm T_s ll T_k$, $rm T_k approx 5000$~K, and little penetration of the background Lyman-$alpha$ radiation field into the neutral hydrogen, or from the unstable neutral medium, with $rm T_s approx T_k approx 1000;K$.
We analyse the properties of circumgalactic gas around simulated galaxies in the redshift range z >= 3, utilising a new sample of cosmological zoom simulations. These simulations are intended to be representative of the observed samples of Lyman-alpha emitters recently obtained with the MUSE instrument (halo masses ~10^10-10^11 solar masses). We show that supernova feedback has a significant impact on both the inflowing and outflowing circumgalactic medium by driving outflows, reducing diffuse inflow rates, and by increasing the neutral fraction of inflowing gas. By temporally stacking simulation outputs we find that significant net mass exchange occurs between inflowing and outflowing phases: none of the phases are mass-conserving. In particular, we find that the mass in neutral outflowing hydrogen declines exponentially with radius as gas flows outwards from the halo centre. This is likely caused by a combination of both fountain-like cycling processes and gradual photo/collisional ionization of outflowing gas. Our simulations do not predict the presence of fast-moving neutral outflows in the CGM. Neutral outflows instead move with modest radial velocities (~ 50 kms^-1), and the majority of the kinetic energy is associated with tangential rather than radial motion.
We aim at analysing systematically the distribution and physical properties of neutral and mildly ionised gas in the Milky Way halo, based on a large absorption-selected data set. Multi-wavelength studies were performed combining optical absorption line data of CaII and NaI with follow-up HI 21-cm emission line observations along 408 sight lines towards low- and high-redshift QSOs. We made use of archival optical spectra obtained with UVES/VLT. HI data were extracted from the Effelsberg-Bonn HI survey and the Galactic All-Sky survey. For selected sight lines we obtained deeper follow-up observations using the Effelsberg 100-m telescope. CaII (NaI) halo absorbers at intermediate and high radial velocities are present in 40-55% (20-35%) of the sightlines, depending on the column density threshold chosen. Many halo absorbers show multi-component absorption lines, indicating the presence of sub-structure. In 65% of the cases, absorption is associated with HI 21-cm emission. The CaII (NaI) column density distribution function follows a power-law with a slope of -2.2 (-1.4). Our absorption-selected survey confirms our previous results that the Milky Way halo is filled with a large number of neutral gas structures whose high column density tail represents the population of common HI high- and intermediate-velocity clouds seen in 21-cm observations. We find that CaII/NaI column density ratios in the halo absorbers are typically smaller than those in the Milky Way disc, in the gas in the Magellanic Clouds, and in damped Lyman-alpha systems. The small ratios (prominent in particular in high-velocity components) indicate a lower level of Ca depletion onto dust grains in Milky Way halo absorbers compared to gas in discs and inner regions of galaxies.
Two major questions in galaxy evolution are how star-formation on small scales leads to global scaling laws and how galaxies acquire sufficient gas to sustain their star formation rates. HI observations with high angular resolution and with sensitivity to very low column densities are some of the important observational ingredients that are currently still missing. Answers to these questions are necessary for a correct interpretation of observations of galaxy evolution in the high-redshift universe and will provide crucial input for the sub-grid physics in hydrodynamical simulations of galaxy evolutions. In this chapter we discuss the progress that will be made with the SKA using targeted observations of nearby individual disk and dwarf galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا