Do you want to publish a course? Click here

An absorption-selected survey of neutral gas in the Milky Way halo

230   0   0.0 ( 0 )
 Added by Nadya Ben Bekhti
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We aim at analysing systematically the distribution and physical properties of neutral and mildly ionised gas in the Milky Way halo, based on a large absorption-selected data set. Multi-wavelength studies were performed combining optical absorption line data of CaII and NaI with follow-up HI 21-cm emission line observations along 408 sight lines towards low- and high-redshift QSOs. We made use of archival optical spectra obtained with UVES/VLT. HI data were extracted from the Effelsberg-Bonn HI survey and the Galactic All-Sky survey. For selected sight lines we obtained deeper follow-up observations using the Effelsberg 100-m telescope. CaII (NaI) halo absorbers at intermediate and high radial velocities are present in 40-55% (20-35%) of the sightlines, depending on the column density threshold chosen. Many halo absorbers show multi-component absorption lines, indicating the presence of sub-structure. In 65% of the cases, absorption is associated with HI 21-cm emission. The CaII (NaI) column density distribution function follows a power-law with a slope of -2.2 (-1.4). Our absorption-selected survey confirms our previous results that the Milky Way halo is filled with a large number of neutral gas structures whose high column density tail represents the population of common HI high- and intermediate-velocity clouds seen in 21-cm observations. We find that CaII/NaI column density ratios in the halo absorbers are typically smaller than those in the Milky Way disc, in the gas in the Magellanic Clouds, and in damped Lyman-alpha systems. The small ratios (prominent in particular in high-velocity components) indicate a lower level of Ca depletion onto dust grains in Milky Way halo absorbers compared to gas in discs and inner regions of galaxies.



rate research

Read More

We perform a systematic study of physical properties and distribution of neutral and ionised gas in the halo of the Milky Way (MW). Beside the large neutral intermediate- and high-velocity cloud (IVC, HVC) complexes there exists a population of partly ionised gaseous structures with low-column densities that have a substantial area filling factor. The origin and nature of these structures are still under debate. We analyse the physical parameters of the MW halo gas and the relation to quasar (QSO) metal-absorption line systems at low and high redshifts. For this purpose we combine new HI 21-cm data from the EBHIS and GASS surveys with optical quasar absorption line data to study the filling factor and distribution of these gaseous clouds in the halo at HI densities below 10^19 1/cm^2. This study is important to understand the evolution of the MW in particular and the gas accretion mechanisms of galaxies in general.
We exploit the [Mg/Mn]-[Al/Fe] chemical abundance plane to help identify nearby halo stars in the 14th data release from the APOGEE survey that have been accreted on to the Milky Way. Applying a Gaussian Mixture Model, we find a `blob of 856 likely accreted stars, with a low disc contamination rate of ~7%. Cross-matching the sample with the second data release from Gaia gives us access to parallaxes and apparent magnitudes, which place constraints on distances and intrinsic luminosities. Using a Bayesian isochrone pipeline, this enables us to estimate new ages for the accreted stars, with typical uncertainties of ~20%. Our new catalogue is further supplemented with estimates of orbital parameters. The blob stars span a metallicities between -0.5 to -2.5, and [Mg/Fe] between -0.1 to 0.5. They constitute ~30% of the metal-poor ([Fe/H] < -0.8) halo at metallicities of ~-1.4. Our new ages are mainly range between 8 to 13 Gyr, with the oldest stars the metal-poorest, and with the highest [Mg/Fe] abundance. If the blob stars are assumed to belong to a single progenitor, the ages imply that the system merged with our Milky Way around 8 Gyr ago and that star formation proceeded for ~5 Gyr. Dynamical arguments suggest that such a single progenitor would have a total mass of ~1011Msun, similar to that found by other authors using chemical evolution models and simulations. Comparing the scatter in the [Mg/Fe]-[Fe/H] plane of the blob stars to that measured for stars belonging to the Large Magellanic Cloud suggests that the blob does indeed contain stars from only one progenitor.
314 - A. Helmi , M. Irwin , A. Deason 2019
The goal of this survey is to study the formation and evolution of the Milky Way halo to deduce its assembly history and the 3D distribution of mass in the Milky Way. The combination of multi-band photometry, Gaia proper motion and parallax data, and radial velocities and the metallicity and elemental abundances obtained from low-resolution spectra of halo giants with 4MOST, will yield an unprecedented characterisation of the Milky Way halo and its interface with the thick disc. The survey will produce a volume- and magnitude-limited complete sample of giant stars in the halo. It will cover at least 10,000 square degrees of high Galactic latitude, and measure line-of-sight velocities with a precision of 1-2 km/s as well as metallicities to within 0.2 dex.
We will study the formation history of the Milky Way, and the earliest phases of its chemical enrichment, with a sample of more than 1.5 million stars at high galactic latitude. Elemental abundances of up to 20 elements with a precision of better than 0.2 dex will be derived for these stars. The sample will include members of kinematically coherent substructures, which we will associate with their possible birthplaces by means of their abundance signatures and kinematics, allowing us to test models of galaxy formation. Our target catalogue is also expected to contain 30,000 stars at a metallicity of less than one hundredth that of the Sun. This sample will therefore be almost a factor of 100 larger than currently existing samples of metal-poor stars for which precise elemental abundances are available (determined from high-resolution spectroscopy), enabling us to study the early chemical evolution of the Milky Way in unprecedented detail.
97 - A. Klitsch 2017
Studying the flow of baryons into and out of galaxies is an important part of understanding the evolution of galaxies over time. We present a detailed case study of the environment around an intervening Ly $alpha$ absorption line system at $z_{rm abs} = 0.633$, seen towards the quasar J0423$-$0130 ($z_{rm QSO} = 0.915$). We detect with ALMA the $^{12}$CO(2--1), $^{12}$CO(3--2) and $1.2$~mm continuum emission from a galaxy at the redshift of the Ly $alpha$ absorber at a projected distance of $135$ kpc. From the ALMA detections, we infer ISM conditions similar to those in low redshift Luminous Infrared Galaxies. DDT MUSE integral field unit observations reveal the optical counterpart of the $^{12}$CO emission line source and three additional emission line galaxies at the absorber redshift, which together form a galaxy group. The $^{12}$CO emission line detections originate from the most massive galaxy in this group. While we cannot exclude that we miss a fainter host, we reach a dust-uncorrected star-formation rate (SFR) limit of > $0.3 text{M}_{odot} text{ yr}^{-1}$ within $100$ kpc from the sightline to the background quasar. We measure the dust-corrected SFR (ranging from $3$ to $50$ M$_{odot}$ yr$^{-1}$), the morpho-kinematics and the metallicities of the four group galaxies to understand the relation between the group and the neutral gas probed in absorption. We find that the Ly $alpha$ absorber traces either an outflow from the most massive galaxy or intra-group gas. This case study illustrates the power of combining ALMA and MUSE to obtain a census of the cool baryons in a bounded structure at intermediate redshift.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا