Do you want to publish a course? Click here

A Risk Based approach for the Solvency Capital requirement for Health Plans

386   0   0.0 ( 0 )
 Added by Davide Biancalana
 Publication date 2020
  fields Financial
and research's language is English




Ask ChatGPT about the research

The study deals with the assessment of risk measures for Health Plans in order to assess the Solvency Capital Requirement. For the estimation of the individual health care expenditure for several episode types, we suggest an original approach based on a three-part regression model. We propose three Generalized Linear Models (GLM) to assess claim counts, the allocation of each claim to a specific episode and the severity average expenditures respectively. One of the main practical advantages of our proposal is the reduction of the regression models compared to a traditional approach, where several two-part models for each episode types are requested. As most health plans require co-payments or co-insurance, considering at this stage the non-linearity condition of the reimbursement function, we adopt a Montecarlo simulation to assess the health plan costs. The simulation approach provides the probability distribution of the Net Asset Value of the Health Plan and the estimate of several risk measures.



rate research

Read More

We propose a robust risk measurement approach that minimizes the expectation of overestimation plus underestimation costs. We consider uncertainty by taking the supremum over a collection of probability measures, relating our approach to dual sets in the representation of coherent risk measures. We provide results that guarantee the existence of a solution and explore the properties of minimizer and minimum as risk and deviation measures, respectively. An empirical illustration is carried out to demonstrate the use of our approach in capital determination.
In this paper we develop a novel methodology for estimation of risk capital allocation. The methodology is rooted in the theory of risk measures. We work within a general, but tractable class of law-invariant coherent risk measures, with a particular focus on expected shortfall. We introduce the concept of fair capital allocations and provide explicit formulae for fair capital allocations in case when the constituents of the risky portfolio are jointly normally distributed. The main focus of the paper is on the problem of approximating fair portfolio allocations in the case of not fully known law of the portfolio constituents. We define and study the concepts of fair allocation estimators and asymptotically fair allocation estimators. A substantial part of our study is devoted to the problem of estimating fair risk allocations for expected shortfall. We study this problem under normality as well as in a nonparametric setup. We derive several estimators, and prove their fairness and/or asymptotic fairness. Last, but not least, we propose two backtesting methodologies that are oriented at assessing the performance of the allocation estimation procedure. The paper closes with a substantial numerical study of the subject.
We present an approach to market-consistent multi-period valuation of insurance liability cash flows based on a two-stage valuation procedure. First, a portfolio of traded financial instrument aimed at replicating the liability cash flow is fixed. Then the residual cash flow is managed by repeated one-period replication using only cash funds. The latter part takes capital requirements and costs into account, as well as limited liability and risk averseness of capital providers. The cost-of-capital margin is the value of the residual cash flow. We set up a general framework for the cost-of-capital margin and relate it to dynamic risk measurement. Moreover, we present explicit formulas and properties of the cost-of-capital margin under further assumptions on the model for the liability cash flow and on the conditional risk measures and utility functions. Finally, we highlight computational aspects of the cost-of-capital margin, and related quantities, in terms of an example from life insurance.
The presence of non linear instruments is responsible for the emergence of non Gaussian features in the price changes distribution of realistic portfolios, even for Normally distributed risk factors. This is especially true for the benchmark Delta Gamma Normal model, which in general exhibits exponentially damped power law tails. We show how the knowledge of the model characteristic function leads to Fourier representations for two standard risk measures, the Value at Risk and the Expected Shortfall, and for their sensitivities with respect to the model parameters. We detail the numerical implementation of our formulae and we emphasizes the reliability and efficiency of our results in comparison with Monte Carlo simulation.
Capital allocation principles are used in various contexts in which a risk capital or a cost of an aggregate position has to be allocated among its constituent parts. We study capital allocation principles in a performance measurement framework. We introduce the notation of suitability of allocations for performance measurement and show under different assumptions on the involved reward and risk measures that there exist suitable allocation methods. The existence of certain suitable allocation principles generally is given under rather strict assumptions on the underlying risk measure. Therefore we show, with a reformulated definition of suitability and in a slightly modified setting, that there is a known suitable allocation principle that does not require any properties of the underlying risk measure. Additionally we extend a previous characterization result from the literature from a mean-risk to a reward-risk setting. Formulations of this theory are also possible in a game theoretic setting.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا