Do you want to publish a course? Click here

Insurance valuation: a computable multi-period cost-of-capital approach

241   0   0.0 ( 0 )
 Added by Filip Lindskog
 Publication date 2016
  fields Financial
and research's language is English




Ask ChatGPT about the research

We present an approach to market-consistent multi-period valuation of insurance liability cash flows based on a two-stage valuation procedure. First, a portfolio of traded financial instrument aimed at replicating the liability cash flow is fixed. Then the residual cash flow is managed by repeated one-period replication using only cash funds. The latter part takes capital requirements and costs into account, as well as limited liability and risk averseness of capital providers. The cost-of-capital margin is the value of the residual cash flow. We set up a general framework for the cost-of-capital margin and relate it to dynamic risk measurement. Moreover, we present explicit formulas and properties of the cost-of-capital margin under further assumptions on the model for the liability cash flow and on the conditional risk measures and utility functions. Finally, we highlight computational aspects of the cost-of-capital margin, and related quantities, in terms of an example from life insurance.



rate research

Read More

Current approaches to fair valuation in insurance often follow a two-step approach, combining quadratic hedging with application of a risk measure on the residual liability, to obtain a cost-of-capital margin. In such approaches, the preferences represented by the regulatory risk measure are not reflected in the hedging process. We address this issue by an alternative two-step hedging procedure, based on generalised regression arguments, which leads to portfolios that are neutral with respect to a risk measure, such as Value-at-Risk or the expectile. First, a portfolio of traded assets aimed at replicating the liability is determined by local quadratic hedging. Second, the residual liability is hedged using an alternative objective function. The risk margin is then defined as the cost of the capital required to hedge the residual liability. In the case quantile regression is used in the second step, yearly solvency constraints are naturally satisfied; furthermore, the portfolio is a risk minimiser among all hedging portfolios that satisfy such constraints. We present a neural network algorithm for the valuation and hedging of insurance liabilities based on a backward iterations scheme. The algorithm is fairly general and easily applicable, as it only requires simulated paths of risk drivers.
The strengthening of capital requirements has induced banks and traders to consider charging a so called capital valuation adjustment (KVA) to the clients in OTC transactions. This roughly corresponds to charge the clients ex-ante the profit requirement that is asked to the trading desk. In the following we try to delineate a possible way to assess the impact of capital constraints in the valuation of a deal. We resort to an optimisation stemming from an indifference pricing approach, and we study both the linear problem from the point of view of the whole bank and the non-linear problem given by the viewpoint of shareholders. We also consider the case where one optimises the median rather than the mean statistics of the profit and loss distribution.
Firms should keep capital to offer sufficient protection against the risks they are facing. In the insurance context methods have been developed to determine the minimum capital level required, but less so in the context of firms with multiple business lines including allocation. The individual capital reserve of each line can be represented by means of classical models, such as the conventional Cram{e}r-Lundberg model, but the challenge lies in soundly modelling the correlations between the business lines. We propose a simple yet versatile approach that allows for dependence by introducing a common environmental factor. We present a novel Bayesian approach to calibrate the latent environmental state distribution based on observations concerning the claim processes. The calibration approach is adjusted for an environmental factor that changes over time. The convergence of the calibration procedure towards the true environmental state is deduced. We then point out how to determine the optimal initial capital of the different business lines under specific constraints on the ruin probability of subsets of business lines. Upon combining the above findings, we have developed an easy-to-implement approach to capital risk management in a multi-dimensional insurance risk model.
We analyze multiline pricing and capital allocation in equilibrium no-arbitrage markets. Existing theories often assume a perfect complete market, but when pricing is linear, there is no diversification benefit from risk pooling and therefore no role for insurance companies. Instead of a perfect market, we assume a non-additive distortion pricing functional and the principle of equal priority of payments in default. Under these assumptions, we derive a canonical allocation of premium and margin, with properties that merit the name the natural allocation. The natural allocation gives non-negative margins to all independent lines for default-free insurance but can exhibit negative margins for low-risk lines under limited liability. We introduce novel conditional expectation measures of relative risk within a portfolio and use them to derive simple, intuitively appealing expressions for risk margins and capital allocations. We give a unique capital allocation consistent with our law invariant pricing functional. Such allocations produce returns that vary by line, in contrast to many other approaches. Our model provides a bridge between the theoretical perspective that there should be no compensation for bearing diversifiable risk and the empirical observation that more risky lines fetch higher margins relative to subjective expected values.
We propose a robust risk measurement approach that minimizes the expectation of overestimation plus underestimation costs. We consider uncertainty by taking the supremum over a collection of probability measures, relating our approach to dual sets in the representation of coherent risk measures. We provide results that guarantee the existence of a solution and explore the properties of minimizer and minimum as risk and deviation measures, respectively. An empirical illustration is carried out to demonstrate the use of our approach in capital determination.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا