Do you want to publish a course? Click here

Mn-rich MnSb2Te4: A topological insulator with magnetic gap closing at high Curie temperatures of 45-50 K

67   0   0.0 ( 0 )
 Added by Oliver Rader
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ferromagnetic topological insulators exhibit the quantum anomalous Hall effect that might be used for high precision metrology and edge channel spintronics. In conjunction with superconductors, they could host chiral Majorana zero modes which are among the contenders for the realization of topological qubits. Recently, it was discovered that the stable 2+ state of Mn enables the formation of intrinsic magnetic topological insulators with A1B2C4 stoichiometry. However, the first representative, MnBi2Te4, is antiferromagnetic with 25 K Neel temperature and strongly n-doped. Here, we show that p-type MnSb2Te4, previously considered topologically trivial, is a ferromagnetic topological insulator in the case of a few percent of Mn excess. It shows (i) a ferromagnetic hysteresis with record high Curie temperature of 45-50 K, (ii) out-of-plane magnetic anisotropy and (iii) a two-dimensional Dirac cone with the Dirac point close to the Fermi level which features (iv) out-of-plane spin polarization as revealed by photoelectron spectroscopy and (v) a magnetically induced band gap that closes at the Curie temperature as demonstrated by scanning tunneling spectroscopy. Moreover, it displays (vi) a critical exponent of magnetization beta~1, indicating the vicinity of a quantum critical point. Ab initio band structure calculations reveal that the slight excess of Mn that substitutionally replaces Sb atoms provides the ferromagnetic interlayer coupling. Remaining deviations from the ferromagnetic order, likely related to this substitution, open the inverted bulk band gap and render MnSb2Te4 a robust topological insulator and new benchmark for magnetic topological insulators.

rate research

Read More

The effect of microscopic Mn cluster distribution on the Curie temperature (Tc) is studied using density-functional calculations. We find that the calculated Tc depends crucially on the microscopic cluster distribution, which can explain the abnormally large variations in experimental Tc values from a few K to well above room temperature. The partially dimerized Mn_2-Mn_1 distribution is found to give the highest Tc > 500 K, and in general, the presence of the Mn_2 dimer has a tendency to enhance Tc. The lowest Tc values close to zero are obtained for the Mn_4-Mn_1 and Mn_4-Mn_3 distributions.
We propose two-dimensional (2D) Ising-type ferromagnetic semiconductors TcSiTe3, TcGeSe3, and TcGeTe3 with high Curie temperatures around 200-0500 K. Owing to large spin-orbit couplings, the large magnetocrystalline anisotropy energy (MAE), large anomalous Hall conductivity, and large magneto-optical Kerr effect were discovered in these intriguing 2D materials. By comparing all possible 2D MGeTe3 materials (M = 3d, 4d, 5d transition metals), we found a large orbital moment around 0.5 $mu$B per atom and a large MAE for TcGeTe3. The large orbital moments are revealed to be from the comparable crystal fields and electron correlations in these Tc-based 2D materials. The microscopic mechanism of the high Curie temperature is also addressed. Our findings reveal the unique magnetic behaviors of 2D Tc-based materials and present a family of 2D ferromagnetic semiconductors with large MAE and Kerr rotation angles that would have wide applications in designing spintronic devices.
108 - Yunyu Yin , Xiaoli Ma , Dayu Yan 2021
Intrinsic magnetic topological insulators provide an ideal platform to achieve various exciting physical phenomena. However, this kind of materials and related research are still very rare. In this work, we reported the electronic and structural phase transitions in intrinsic magnetic topological insulator MnSb2Te4 driven by hydrostatic pressure. Electric transport results revealed that temperature dependent resistance showed a minimum value near short-range antiferromagnetic (AFM) ordering temperature TN, the TN values decline with pressure, and the AFM ordering was strongly suppressed near 10 GPa and was not visible above 11.5 GPa. The intensity of three Raman vibration modes in MnSb2Te4 declined quickly starting from 7.5 GPa and these modes become undetectable above 9 GPa, suggesting possible insulator-metal transition, which is further confirmed by theoretical calculation. In situ x-ray diffraction (XRD) demonstrated that an extra diffraction peak appears near 9.1 GPa and MnSb2Te4 started to enter an amorphous-like state above 16.6 GPa, suggesting the structural origin of suppressed AFM ordering and metallization. This work has demonstrated the correlation among interlayer interaction, magnetic ordering, and electric behavior, which could be benefit for the understanding of the fundamental properties of this kind of materials and devices.
We investigate the relationship between the Curie temperature TC and the carrier density p in the ferromagnetic semiconductor (Ga,Mn)As. Carrier densities are extracted from analysis of the Hall resistance at low temperatures and high magnetic fields. Results are found to be consistent with ion channeling measurements when performed on the same samples. We find that both TC and the electrical conductivity increase monotonically with increasing p, and take their largest values when p is comparable to the concentration of substitutional Mn acceptors. This is inconsistent with models in which the Fermi level is located within a narrow isolated impurity band.
A topological insulator (TI) interfaced with a magnetic insulator (MI) may host an anomalous Hall effect (AHE), a quantum AHE, and a topological Hall effect (THE). Recent studies, however, suggest that coexisting magnetic phases in TI/MI heterostructures may result in an AHE-associated response that resembles a THE but in fact is not. This article reports a genuine THE in a TI/MI structure that has only one magnetic phase. The structure shows a THE in the temperature range of T=2-3 K and an AHE at T=80-300 K. Over T=3-80 K, the two effects coexist but show opposite temperature dependencies. Control measurements, calculations, and simulations together suggest that the observed THE originates from skyrmions, rather than the coexistence of two AHE responses. The skyrmions are formed due to an interfacial DMI interaction. The DMI strength estimated is substantially higher than that in heavy metal-based systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا