Do you want to publish a course? Click here

Topological Hall Effect in a Topological Insulator Interfaced with a Magnetic Insulator

129   0   0.0 ( 0 )
 Added by Peng Li
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A topological insulator (TI) interfaced with a magnetic insulator (MI) may host an anomalous Hall effect (AHE), a quantum AHE, and a topological Hall effect (THE). Recent studies, however, suggest that coexisting magnetic phases in TI/MI heterostructures may result in an AHE-associated response that resembles a THE but in fact is not. This article reports a genuine THE in a TI/MI structure that has only one magnetic phase. The structure shows a THE in the temperature range of T=2-3 K and an AHE at T=80-300 K. Over T=3-80 K, the two effects coexist but show opposite temperature dependencies. Control measurements, calculations, and simulations together suggest that the observed THE originates from skyrmions, rather than the coexistence of two AHE responses. The skyrmions are formed due to an interfacial DMI interaction. The DMI strength estimated is substantially higher than that in heavy metal-based systems.



rate research

Read More

Breaking the time-reversal symmetry of a topological insulator (TI) by ferromagnetism can induce exotic magnetoelectric phenomena such as quantized anomalous Hall (QAH) effect. Experimental observation of QAH effect in a magnetically doped TI requires ferromagnetism not relying on the charge carriers. We have realized the ferromagnetism independent of both polarity and density of carriers in Cr-doped BixSb2-xTe3 thin films grown by molecular beam epitaxy. Meanwhile, the anomalous Hall effect is found significantly enhanced with decreasing carrier density, with the anomalous Hall angle reaching unusually large value 0.2 and the zero field Hall resistance reaching one quarter of the quantum resistance (h/e2), indicating the approaching of the QAH regime. The work paves the way to ultimately realize QAH effect and other unique magnetoelectric phenomena in TIs.
Precise estimation of spin Hall angle as well as successful maximization of spin-orbit torque (SOT) form a basis of electronic control of magnetic properties with spintronic functionality. Until now, current-nonlinear Hall effect, or second harmonic Hall voltage has been utilized as one of the methods for estimating spin Hall angle, which is attributed to the magnetization oscillation by SOT. Here, we argue the second harmonic Hall voltage in magnetic/nonmagnetic topological insulator (TI) heterostructures, Cr$_x$(Bi$_{1-y}$Sb$_y$)$_{2-x}$Te$_3$/(Bi$_{1-y}$Sb$_y$)$_2$Te$_3$. From the angular, temperature and magnetic field dependence, it is unambiguously shown that the large second harmonic Hall voltage in TI heterostructures is governed not by SOT but mainly by asymmetric magnon scattering mechanism without magnetization oscillation. Thus, this method does not allow an accurate estimation of spin Hall angle when magnons largely contribute to electron scattering. Instead, the SOT contribution in a TI heterostructure is exemplified by current pulse induced non-volatile magnetization switching, which is realized with a current density of $sim 2.5 times 10^{10} mathrm{A/m}^2$, showing its potential as spintronic materials.
We report current-direction dependent or unidirectional magnetoresistance (UMR) in magnetic/nonmagnetic topological insulator (TI) heterostructures, Cr$_x$(Bi$_{1-y}$Sb$_y$)$_{2-x}$Te$_3$/(Bi$_{1-y}$Sb$_y$)$_2$Te$_3$, that is several orders of magnitude larger than in other reported systems. From the magnetic field and temperature dependence, the UMR is identified to originate from the asymmetric scattering of electrons by magnons. In particular, the large magnitude of UMR is an outcome of spin-momentum locking and a small Fermi wavenumber at the surface of TI. In fact, the UMR is maximized around the Dirac point with the minimal Fermi wavenumber.
Non-volatile memory and computing technology rely on efficient read and write of ultra-tiny information carriers that do not wear out. Magnetic skyrmions are emerging as a potential carrier since they are topologically robust nanoscale spin textures that can be manipulated with ultralow current density. To date, most of skyrmions are reported in metallic films, which suffer from additional Ohmic loss and thus high energy dissipation. Therefore, skyrmions in magnetic insulators are of technological importance for low-power information processing applications due to their low damping and the absence of Ohmic loss. Moreover, they attract fundamental interest in studying various magnon-skyrmion interactions11. Skyrmions have been observed in one insulating material Cu2OSeO3 at cryogenic temperatures, where they are stabilized by bulk Dzyaloshinskii-Moriya interaction. Here, we report the observation of magnetic skyrmions that survive above room temperature in magnetic insulator/heavy metal heterostructures, i.e., thulium iron garnet/platinum. The presence of these skyrmions results from the Dzyaloshinskii-Moriya interaction at the interface and is identified by the emergent topological Hall effect. Through tuning the magnetic anisotropy via varying temperature, we observe skyrmions in a large window of external magnetic field and enhanced stability of skyrmions in the easy-plane anisotropy regime. Our results will help create a new platform for insulating skyrmion-based room temperature low dissipation spintronic applications.
Topological spintronics aims to exploit the spin-momentum locking in the helical surface states of topological insulators for spin-orbit torque devices. We address a fundamental question that still remains unresolved in this context: does the topological surface state alone produce the largest values of spin-charge conversion efficiency or can the strongly spin-orbit coupled bulk states also contribute significantly? By studying the Fermi level dependence of spin pumping in topological insulator/ferrimagnetic insulator bilayers, we show that the spin Hall conductivity is constant when the Fermi level is tuned across the bulk band gap, consistent with a full bulk band calculation. The results suggest a new perspective, wherein bulk-surface correspondence allows spin-charge conversion to be simultaneously viewed either as coming from the full bulk band, or from spin-momentum locking of the surface state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا