No Arabic abstract
The duality between a $d$-dimensional conformal field theory with relevant deformation and a gravity theory on an asymptotically AdS$_{d+1}$ geometry, has become a suitable tool in the investigation of the emergence of gravity from quantum entanglement in field theory. Recently, we have tested the duality between the mass-deformed ABJM theory and asymptotically AdS$_4$ gravity theory, which is obtained from the KK reduction of the 11-dimensional supergravity on the LLM geometry. In this paper, we extend the KK reduction procedure beyond the linear order and establish non-trivial KK maps between 4-dimensional fields and 11-dimensional fluctuations. We rely on this gauge/gravity duality to calculate the entanglement entropy by using the Ryu-Takayanagi holographic formula and the path integral method developed by Faulkner. We show that the entanglement entropies obtained using these two methods agree when the asymptotically AdS$_4$ metric satisfies the linearized Einstein equation with nonvanishing energy-momentum tensor for two scalar fields. These scalar fields encode the information of the relevant deformation of the ABJM theory. This confirms that the asymptotic limit of LLM geometry is the emergent gravity of the quantum entanglement in the mass-deformed ABJM theory with a small mass parameter. We also comment on the issue of the relative entropy and the Fisher information in our setup.
Utilizing the holographic technique, we investigate how the entanglement entropy evolves along the RG flow. After introducing a new generalized temperature which satisfies the thermodynamics-like law even in the IR regime, we find that the renormalized entropy and the generalized temperature in the IR limit approach the thermal entropy and thermodynamic temperature of a real thermal system. This result implies that the microscopic quantum entanglement entropy in the IR region leads to the thermodynamic relation up to small quantum corrections caused by the quantum entanglement near the entangling surface. Intriguingly, this IR feature of the entanglement entropy universally happens regardless of the detail of the dual field theory and the shape of the entangling surface. We check this IR universality with a most general geometry called the hyperscaling violation geometry which is dual to a relativistic non-conformal field theory.
We study one-loop divergences in Einstein-Maxwell theory and their implications for the weak gravity conjecture. In particular, we show that renormalization of these divergences leads to positivity of higher-derivative corrections to the charge-to-mass ratio of dyonic black holes. This allows charged extremal black holes to decay into smaller ones, and so the weak gravity conjecture is automatically satisfied. We also extend this analysis to a much wider class of Einstein-Maxwell theories coupled to additional massless matter fields and find the same result. We then go on to study one-loop divergences in $mathcal{N} geq 2$ supergravity and show that dyonic black holes in these theories are protected against one-loop quantum corrections, even if the black hole breaks supersymmetry. In particular, extremal dyonic black holes are stabilized by supersymmetry and cannot decay.
This paper draws on a number of Roger Penroses ideas - including the non-Hamiltonian phase-space flow of the Hawking Box, Conformal Cyclic Cosmology, non-computability and gravitationally induced quantum state reduction - in order to propose a radically unconventional approach to quantum gravity: Invariant Set Theory (IST). In IST, the fundamental laws of physics describe the geometry of the phase portrait of the universe as a whole: quantum process are associated with fine-scale fractal geometry, gravitational process with larger-scale heterogeneous geometry. With this, it becomes possible to explain the experimental violation of Bell Inequalities without having to abandon key ingredients of general relativity: determinism and local causality. Ensembles in IST can be described by complex Hilbert states over a finite set $mathbb C_p$ of complex numbers, where $p$ is a large finite integer. The quantum mechanics of finite-dimensional Hilbert spaces is emergent as a singular limit when $p rightarrow infty$. A small modification to the field equations of general relativity is proposed to make it consistent with IST.
Motivated by results from the LHC and dark matter searches, we study the possibility of phenomenologically viable R-parity violation in $SU(5)$ GUT models from a top-down point of view. We show that in contrast to the more model dependent bounds on the proton lifetime, the limits on neutrino masses provide a robust, stringent and complementary constraint on all $SU(5)$ GUT-based R-parity violating models. Focusing on well-motivated string/$M$ theory GUT frameworks with mechanisms for doublet-triplet splitting and a solution to the $mu/Bmu$ problems, we show that imposing the neutrino mass bounds implies that R-parity violation is disfavored. The arguments can also be generalized to minimal $SO(10)$ GUTs. An experimental observation of R-parity violation would, therefore, disfavor such classes of top-down GUT models.
5d superconformal field theories (SCFTs) can be obtained from 6d SCFTs by circle compactification and mass deformation. Successive decoupling of hypermultiplet matter and RG-flow generates a decoupling tree of descendant 5d SCFTs. In this paper we determine the magnetic quivers and Hasse diagrams, that encode the Higgs branches of 5d SCFTs, for entire decoupling trees. Central to this undertaking is the approach in arXiv:2008.05577, which, starting from the generalized toric polygons (GTPs) dual to 5-brane webs/tropical curves, provides a systematic and succinct derivation of magnetic quivers and their Hasse diagrams. The decoupling in the GTP description is straightforward, and generalizes the standard flop transitions of curves in toric polygons. We apply this approach to a large class of 5d KK-theories, and compute the Higgs branches for their descendants. In particular we determine the decoupling tree for all rank 2 5d SCFTs. For each tree, we also identify the flavor symmetry algebras from the magnetic quivers, including non-simply-laced flavor symmetries.