No Arabic abstract
Superfluid vortices are quantum excitations carrying quantized amount of orbital angular momentum in a phase where global symmetry is spontaneously broken. We address a question of whether magnetic vortices in superconductors with dynamical gauge fields can carry nonzero orbital angular momentum or not. We discuss the angular momentum conservation in several distinct classes of examples from crossdisciplinary fields of physics across condensed matter, dense nuclear systems, and cosmology. The angular momentum carried by gauge field configurations around the magnetic vortex plays a crucial role in satisfying the principle of the conservation law. Based on various ways how the angular momentum conservation is realized, we provide a general scheme of classifying magnetic vortices in different phases of matter.
We propose an alternative route to engineer Majorana zero modes (MZMs), which relies on inducing shift or spin vortex defects in magnetic textures which microscopically coexist or are in proximity to a superconductor. The present idea applies to a variety of superconducting materials and hybrid structures, irrespectively of their spin-singlet, -triplet, or mixed type of pairing, as long as their bulk energy spectrum contains robust point nodes. Our mechanism provides a new framework to understand the recent observations of pairs of MZMs in superconductor - magnetic adatom systems. Moreover, it can inspire the experimental development of new platforms, consisting of nanowires in proximity to conventional superconductors with strong Rashba spin-orbit coupling.
Identifying and imaging spin textures of ever more complex magnetic structures has become a major challenge in the past decade, especially at ultrashort timescales. Most of current approaches are based on the analysis of their polarization and magnetization-dependent reflectivities. Based on our joint publication XXX XX XXXXXX, we introduce a different concept, centered on the coupling of magnetic structures with light beams carrying orbital angular momentum (OAM). Upon reflection by a magnetic vortex, an incoming beam with a unique value $ell$ of OAM gets enriched in the neighboring OAM modes $ellpm 1$. It results in anisotropic far-field images, which are identified as a Magnetic Helicoidal Dichroism (MHD) signal. Their analysis allow to retrieve the complex magneto-optical constants with excellent precision. This method, which does not require any polarization-resolved analysis, is promising for a quick identification of spin textures, including with attosecond to femtosecond time resolutions.
We show how angular momentum conservation can stabilise a symmetry-protected quasi-topological phase of matter supporting Majorana quasi-particles as edge modes in one-dimensional cold atom gases. We investigate a number-conserving four-species Hubbard model in the presence of spin-orbit coupling. The latter reduces the global spin symmetry to an angular momentum parity symmetry, which provides an extremely robust protection mechanism that does not rely on any coupling to additional reservoirs. The emergence of Majorana edge modes is elucidated using field theory techniques, and corroborated by density-matrix-renormalization-group simulations. Our results pave the way toward the observation of Majorana edge modes with alkaline-earth-like fermions in optical lattices, where all basic ingredients for our recipe - spin-orbit coupling and strong inter-orbital interactions - have been experimentally realized over the last two years.
The Casimir force between parallel lines in a theory describing condensed vortices in a plane is determined. We make use of the relation between a Chern-Simons-Higgs model and its dualized version, which is expressed in terms of a dual gauge field and a vortex field. The dual model can have a phase of condensed vortices and, in this phase, there is a mapping to a model of two non-interacting massive scalar fields from which the Casimir force can readily be obtained. The choice of boundary conditions required for the mapped scalar fields and their association with those for the vectorial field and the issues involved are discussed. We also briefly discuss the implications of our results for experiments related to the Casimir effect when vortices can be present.
We derive the microcanonical partition function of the ideal relativistic quantum gas with fixed intrinsic angular momentum as an expansion over fixed multiplicities. We developed a group theoretical approach by generalizing known projection techniques to the Poincare group. Our calculation is carried out in a quantum field framework and applies to particles with any spin. It extends known results in literature in that it does not introduce any large volume approximation and it takes particle spin fully into account. We provide expressions of the microcanonical partition function at fixed multiplicities in the limiting classical case of large volumes and large angular momenta and in the grand-canonical ensemble. We also derive the microcanonical partition function of the ideal relativistic quantum gas with fixed parity.