No Arabic abstract
We show how angular momentum conservation can stabilise a symmetry-protected quasi-topological phase of matter supporting Majorana quasi-particles as edge modes in one-dimensional cold atom gases. We investigate a number-conserving four-species Hubbard model in the presence of spin-orbit coupling. The latter reduces the global spin symmetry to an angular momentum parity symmetry, which provides an extremely robust protection mechanism that does not rely on any coupling to additional reservoirs. The emergence of Majorana edge modes is elucidated using field theory techniques, and corroborated by density-matrix-renormalization-group simulations. Our results pave the way toward the observation of Majorana edge modes with alkaline-earth-like fermions in optical lattices, where all basic ingredients for our recipe - spin-orbit coupling and strong inter-orbital interactions - have been experimentally realized over the last two years.
Symmetry is fundamental to topological phases. In the presence of a gauge field, spatial symmetries will be projectively represented, which may alter their algebraic structure and generate novel topological phases. We show that the $mathbb{Z}_2$ projectively represented translational symmetry operators adopt a distinct commutation relation, and become momentum dependent analogous to twofold nonsymmorphic symmetries. Combined with other internal or external symmetries, they give rise to many exotic band topology, such as the degeneracy over the whole boundary of the Brillouin zone, the single fourfold Dirac point pinned at the Brillouin zone corner, and the Kramers degeneracy at every momentum point. Intriguingly, the Dirac point criticality can be lifted by breaking one primitive translation, resulting in a topological insulator phase, where the edge bands have a M{o}bius twist. Our work opens a new arena of research for exploring topological phases protected by projectively represented space groups.
We give a complete classification of fully symmetric as well as chiral $mathbb{Z}_2$ quantum spin liquids on the pyrochlore lattice using a projective symmetry group analysis of Schwinger boson mean-field states. We find 50 independent ansatze, including the 12 fully symmetric nearest-neighbor $mathbb{Z}_2$ spin liquids that have been classified by Liu et al. [https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.075125]. For each class we specify the most general symmetry-allowed mean-field Hamiltonian. Additionally, we test the properties of a subset of the spin liquid ansatze by solving the mean-field equations for the spin-$1/2$ XXZ model near the antiferromagnetic Heisenberg point. We find that the ansatz with the lowest energy at mean-field level is a chiral spin liquid that breaks the screw symmetry of the lattice modulo time reversal symmetry. This state has a different symmetry than the previously studied monopole flux state. Moreover, this chiral spin liquid state has a substantially lower energy than all other symmetric spin liquid states, suggesting that it could be a stable ground state beyond the mean-field approximation employed in this work.
We investigate the rich quantum phase diagram of Wegners theory of discrete Ising gauge fields interacting with $U(1)$ symmetric single-component fermion matter hopping on a two-dimensional square lattice. In particular limits the model reduces to (i) pure $mathbb{Z}_2$ even and odd gauge theories, (ii) free fermions in a static background of deconfined $mathbb{Z}_2$ gauge fields, (iii) the kinetic Rokhsar-Kivelson quantum dimer model at a generic dimer filling. We develop a local transformation that maps the lattice gauge theory onto a model of $mathbb{Z}_2$ gauge-invariant spin $1/2$ degrees of freedom. Using the mapping, we perform numerical density matrix renormalization group calculations that corroborate our understanding of the limits identified above. Moreover, in the absence of the magnetic plaquette term, we reveal signatures of topologically ordered Dirac semimetal and staggered Mott insulator phases at half-filling. At strong coupling, the lattice gauge theory displays fracton phenomenology with isolated fermions being completely frozen and dimers exhibiting restricted mobility. In that limit, we predict that in the ground state dimers form compact clusters, whose hopping is suppressed exponentially in their size. We determine the band structure of the smallest clusters numerically using exact diagonalization.
Superfluid vortices are quantum excitations carrying quantized amount of orbital angular momentum in a phase where global symmetry is spontaneously broken. We address a question of whether magnetic vortices in superconductors with dynamical gauge fields can carry nonzero orbital angular momentum or not. We discuss the angular momentum conservation in several distinct classes of examples from crossdisciplinary fields of physics across condensed matter, dense nuclear systems, and cosmology. The angular momentum carried by gauge field configurations around the magnetic vortex plays a crucial role in satisfying the principle of the conservation law. Based on various ways how the angular momentum conservation is realized, we provide a general scheme of classifying magnetic vortices in different phases of matter.
Recent experiments on a one-dimensional chain of trapped alkali atoms [arXiv:1707.04344] have observed a quantum transition associated with the onset of period-3 ordering of pumped Rydberg states. This spontaneous $mathbb{Z}_3$ symmetry breaking is described by a constrained model of hard-core bosons proposed by Fendley $et, ,al.$ [arXiv:cond-mat/0309438]. By symmetry arguments, the transition is expected to be in the universality class of the $mathbb{Z}_3$ chiral clock model with parameters preserving both time-reversal and spatial-inversion symmetries. We study the nature of the order-disorder transition in these models, and numerically calculate its critical exponents with exact diagonalization and density-matrix renormalization group techniques. We use finite-size scaling to determine the dynamical critical exponent $z$ and the correlation length exponent $ u$. Our analysis presents the only known instance of a strongly-coupled transition between gapped states with $z e 1$, implying an underlying nonconformal critical field theory.