Do you want to publish a course? Click here

Domain-Level Explainability -- A Challenge for Creating Trust in Superhuman AI Strategies

57   0   0.0 ( 0 )
 Added by Ole Meyer
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

For strategic problems, intelligent systems based on Deep Reinforcement Learning (DRL) have demonstrated an impressive ability to learn advanced solutions that can go far beyond human capabilities, especially when dealing with complex scenarios. While this creates new opportunities for the development of intelligent assistance systems with groundbreaking functionalities, applying this technology to real-world problems carries significant risks and therefore requires trust in their transparency and reliability. With superhuman strategies being non-intuitive and complex by definition and real-world scenarios prohibiting a reliable performance evaluation, the key components for trust in these systems are difficult to achieve. Explainable AI (XAI) has successfully increased transparency for modern AI systems through a variety of measures, however, XAI research has not yet provided approaches enabling domain level insights for expert users in strategic situations. In this paper, we discuss the existence of superhuman DRL-based strategies, their properties, the requirements and challenges for transforming them into real-world environments, and the implications for trust through explainability as a key technology.

rate research

Read More

We describe a framework for research and evaluation in Embodied AI. Our proposal is based on a canonical task: Rearrangement. A standard task can focus the development of new techniques and serve as a source of trained models that can be transferred to other settings. In the rearrangement task, the goal is to bring a given physical environment into a specified state. The goal state can be specified by object poses, by images, by a description in language, or by letting the agent experience the environment in the goal state. We characterize rearrangement scenarios along different axes and describe metrics for benchmarking rearrangement performance. To facilitate research and exploration, we present experimental testbeds of rearrangement scenarios in four different simulation environments. We anticipate that other datasets will be released and new simulation platforms will be built to support training of rearrangement agents and their deployment on physical systems.
Artificial Intelligence (AI) has burrowed into our lives in various aspects; however, without appropriate testing, deployed AI systems are often being criticized to fail in critical and embarrassing cases. Existing testing approaches mainly depend on fixed and pre-defined datasets, providing a limited testing coverage. In this paper, we propose the concept of proactive testing to dynamically generate testing data and evaluate the performance of AI systems. We further introduce Challenge.AI, a new crowd system that features the integration of crowdsourcing and machine learning techniques in the process of error generation, error validation, error categorization, and error analysis. We present experiences and insights into a participatory design with AI developers. The evaluation shows that the crowd workflow is more effective with the help of machine learning techniques. AI developers found that our system can help them discover unknown errors made by the AI models, and engage in the process of proactive testing.
As AI models and services are used in a growing number of highstakes areas, a consensus is forming around the need for a clearer record of how these models and services are developed to increase trust. Several proposals for higher quality and more consistent AI documentation have emerged to address ethical and legal concerns and general social impacts of such systems. However, there is little published work on how to create this documentation. This is the first work to describe a methodology for creating the form of AI documentation we call FactSheets. We have used this methodology to create useful FactSheets for nearly two dozen models. This paper describes this methodology and shares the insights we have gathered. Within each step of the methodology, we describe the issues to consider and the questions to explore with the relevant people in an organization who will be creating and consuming the AI facts in a FactSheet. This methodology will accelerate the broader adoption of transparent AI documentation.
The General AI Challenge is an initiative to encourage the wider artificial intelligence community to focus on important problems in building intelligent machines with more general scope than is currently possible. The challenge comprises of multiple rounds, with the first round focusing on gradual learning, i.e. the ability to re-use already learned knowledge for efficiently learning to solve subsequent problems. In this article, we will present details of the first round of the challenge, its inspiration and aims. We also outline a more formal description of the challenge and present a preliminary analysis of its curriculum, based on ideas from computational mechanics. We believe, that such formalism will allow for a more principled approach towards investigating tasks in the challenge, building new curricula and for potentially improving consequent challenge rounds.
As artificial intelligence and machine learning algorithms make further inroads into society, calls are increasing from multiple stakeholders for these algorithms to explain their outputs. At the same time, these stakeholders, whether they be affected citizens, government regulators, domain experts, or system developers, present different requirements for explanations. Toward addressing these needs, we introduce AI Explainability 360 (http://aix360.mybluemix.net/), an open-source software toolkit featuring eight diverse and state-of-the-art explainability methods and two evaluation metrics. Equally important, we provide a taxonomy to help entities requiring explanations to navigate the space of explanation methods, not only those in the toolkit but also in the broader literature on explainability. For data scientists and other users of the toolkit, we have implemented an extensible software architecture that organizes methods according to their place in the AI modeling pipeline. We also discuss enhancements to bring research innovations closer to consumers of explanations, ranging from simplified, more accessibl

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا