Do you want to publish a course? Click here

General AI Challenge - Round One: Gradual Learning

69   0   0.0 ( 0 )
 Added by Jan Feyereisl
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The General AI Challenge is an initiative to encourage the wider artificial intelligence community to focus on important problems in building intelligent machines with more general scope than is currently possible. The challenge comprises of multiple rounds, with the first round focusing on gradual learning, i.e. the ability to re-use already learned knowledge for efficiently learning to solve subsequent problems. In this article, we will present details of the first round of the challenge, its inspiration and aims. We also outline a more formal description of the challenge and present a preliminary analysis of its curriculum, based on ideas from computational mechanics. We believe, that such formalism will allow for a more principled approach towards investigating tasks in the challenge, building new curricula and for potentially improving consequent challenge rounds.



rate research

Read More

We describe a framework for research and evaluation in Embodied AI. Our proposal is based on a canonical task: Rearrangement. A standard task can focus the development of new techniques and serve as a source of trained models that can be transferred to other settings. In the rearrangement task, the goal is to bring a given physical environment into a specified state. The goal state can be specified by object poses, by images, by a description in language, or by letting the agent experience the environment in the goal state. We characterize rearrangement scenarios along different axes and describe metrics for benchmarking rearrangement performance. To facilitate research and exploration, we present experimental testbeds of rearrangement scenarios in four different simulation environments. We anticipate that other datasets will be released and new simulation platforms will be built to support training of rearrangement agents and their deployment on physical systems.
Artificial Intelligence (AI) has burrowed into our lives in various aspects; however, without appropriate testing, deployed AI systems are often being criticized to fail in critical and embarrassing cases. Existing testing approaches mainly depend on fixed and pre-defined datasets, providing a limited testing coverage. In this paper, we propose the concept of proactive testing to dynamically generate testing data and evaluate the performance of AI systems. We further introduce Challenge.AI, a new crowd system that features the integration of crowdsourcing and machine learning techniques in the process of error generation, error validation, error categorization, and error analysis. We present experiences and insights into a participatory design with AI developers. The evaluation shows that the crowd workflow is more effective with the help of machine learning techniques. AI developers found that our system can help them discover unknown errors made by the AI models, and engage in the process of proactive testing.
Active learning has been a main solution for reducing data labeling costs. However, existing active learning strategies assume that a data owner can interact with annotators in an online, timely manner, which is usually impractical. Even with such interactive annotators, for existing active learning strategies to be effective, they often require many rounds of interactions between the data owner and annotators, which is often time-consuming. In this work, we initiate the study of one-round active learning, which aims to select a subset of unlabeled data points that achieve the highest utility after being labeled with only the information from initially labeled data points. We propose DULO, a general framework for one-round active learning based on the notion of data utility functions, which map a set of data points to some performance measure of the model trained on the set. We formulate the one-round active learning problem as data utility function maximization. We further propose strategies to make the estimation and optimization of data utility functions scalable to large models and large unlabeled data sets. Our results demonstrate that while existing active learning approaches could succeed with multiple rounds, DULO consistently performs better in the one-round setting.
59 - Huimin Peng 2021
This paper briefly reviews the history of meta-learning and describes its contribution to general AI. Meta-learning improves model generalization capacity and devises general algorithms applicable to both in-distribution and out-of-distribution tasks potentially. General AI replaces task-specific models with general algorithmic systems introducing higher level of automation in solving diverse tasks using AI. We summarize main contributions of meta-learning to the developments in general AI, including memory module, meta-learner, coevolution, curiosity, forgetting and AI-generating algorithm. We present connections between meta-learning and general AI and discuss how meta-learning can be used to formulate general AI algorithms.
This article outlines what we learned from the first year of the AI Settlement Generation Competition in Minecraft, a competition about producing AI programs that can generate interesting settlements in Minecraft for an unseen map. This challenge seeks to focus research into adaptive and holistic procedural content generation. Generating Minecraft towns and villages given existing maps is a suitable task for this, as it requires the generated content to be adaptive, functional, evocative and aesthetic at the same time. Here, we present the results from the first iteration of the competition. We discuss the evaluation methodology, present the different technical approaches by the competitors, and outline the open problems.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا