Do you want to publish a course? Click here

Challenge AI Mind: A Crowd System for Proactive AI Testing

108   0   0.0 ( 0 )
 Added by Siwei Fu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Artificial Intelligence (AI) has burrowed into our lives in various aspects; however, without appropriate testing, deployed AI systems are often being criticized to fail in critical and embarrassing cases. Existing testing approaches mainly depend on fixed and pre-defined datasets, providing a limited testing coverage. In this paper, we propose the concept of proactive testing to dynamically generate testing data and evaluate the performance of AI systems. We further introduce Challenge.AI, a new crowd system that features the integration of crowdsourcing and machine learning techniques in the process of error generation, error validation, error categorization, and error analysis. We present experiences and insights into a participatory design with AI developers. The evaluation shows that the crowd workflow is more effective with the help of machine learning techniques. AI developers found that our system can help them discover unknown errors made by the AI models, and engage in the process of proactive testing.



rate research

Read More

We describe a framework for research and evaluation in Embodied AI. Our proposal is based on a canonical task: Rearrangement. A standard task can focus the development of new techniques and serve as a source of trained models that can be transferred to other settings. In the rearrangement task, the goal is to bring a given physical environment into a specified state. The goal state can be specified by object poses, by images, by a description in language, or by letting the agent experience the environment in the goal state. We characterize rearrangement scenarios along different axes and describe metrics for benchmarking rearrangement performance. To facilitate research and exploration, we present experimental testbeds of rearrangement scenarios in four different simulation environments. We anticipate that other datasets will be released and new simulation platforms will be built to support training of rearrangement agents and their deployment on physical systems.
The General AI Challenge is an initiative to encourage the wider artificial intelligence community to focus on important problems in building intelligent machines with more general scope than is currently possible. The challenge comprises of multiple rounds, with the first round focusing on gradual learning, i.e. the ability to re-use already learned knowledge for efficiently learning to solve subsequent problems. In this article, we will present details of the first round of the challenge, its inspiration and aims. We also outline a more formal description of the challenge and present a preliminary analysis of its curriculum, based on ideas from computational mechanics. We believe, that such formalism will allow for a more principled approach towards investigating tasks in the challenge, building new curricula and for potentially improving consequent challenge rounds.
For strategic problems, intelligent systems based on Deep Reinforcement Learning (DRL) have demonstrated an impressive ability to learn advanced solutions that can go far beyond human capabilities, especially when dealing with complex scenarios. While this creates new opportunities for the development of intelligent assistance systems with groundbreaking functionalities, applying this technology to real-world problems carries significant risks and therefore requires trust in their transparency and reliability. With superhuman strategies being non-intuitive and complex by definition and real-world scenarios prohibiting a reliable performance evaluation, the key components for trust in these systems are difficult to achieve. Explainable AI (XAI) has successfully increased transparency for modern AI systems through a variety of measures, however, XAI research has not yet provided approaches enabling domain level insights for expert users in strategic situations. In this paper, we discuss the existence of superhuman DRL-based strategies, their properties, the requirements and challenges for transforming them into real-world environments, and the implications for trust through explainability as a key technology.
The paper describes a Multisource AI Scorecard Table (MAST) that provides the developer and user of an artificial intelligence (AI)/machine learning (ML) system with a standard checklist focused on the principles of good analysis adopted by the intelligence community (IC) to help promote the development of more understandable systems and engender trust in AI outputs. Such a scorecard enables a transparent, consistent, and meaningful understanding of AI tools applied for commercial and government use. A standard is built on compliance and agreement through policy, which requires buy-in from the stakeholders. While consistency for testing might only exist across a standard data set, the community requires discussion on verification and validation approaches which can lead to interpretability, explainability, and proper use. The paper explores how the analytic tradecraft standards outlined in Intelligence Community Directive (ICD) 203 can provide a framework for assessing the performance of an AI system supporting various operational needs. These include sourcing, uncertainty, consistency, accuracy, and visualization. Three use cases are presented as notional examples that support security for comparative analysis.
113 - Liming Zhu , Xiwei Xu , Qinghua Lu 2021
In the last few years, AI continues demonstrating its positive impact on society while sometimes with ethically questionable consequences. Building and maintaining public trust in AI has been identified as the key to successful and sustainable innovation. This chapter discusses the challenges related to operationalizing ethical AI principles and presents an integrated view that covers high-level ethical AI principles, the general notion of trust/trustworthiness, and product/process support in the context of responsible AI, which helps improve both trust and trustworthiness of AI for a wider set of stakeholders.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا