Do you want to publish a course? Click here

Transformers for One-Shot Visual Imitation

144   0   0.0 ( 0 )
 Added by Sudeep Dasari
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Humans are able to seamlessly visually imitate others, by inferring their intentions and using past experience to achieve the same end goal. In other words, we can parse complex semantic knowledge from raw video and efficiently translate that into concrete motor control. Is it possible to give a robot this same capability? Prior research in robot imitation learning has created agents which can acquire diverse skills from expert human operators. However, expanding these techniques to work with a single positive example during test time is still an open challenge. Apart from control, the difficulty stems from mismatches between the demonstrator and robot domains. For example, objects may be placed in different locations (e.g. kitchen layouts are different in every house). Additionally, the demonstration may come from an agent with different morphology and physical appearance (e.g. human), so one-to-one action correspondences are not available. This paper investigates techniques which allow robots to partially bridge these domain gaps, using their past experience. A neural network is trained to mimic ground truth robot actions given context video from another agent, and must generalize to unseen task instances when prompted with new videos during test time. We hypothesize that our policy representations must be both context driven and dynamics aware in order to perform these tasks. These assumptions are baked into the neural network using the Transformers attention mechanism and a self-supervised inverse dynamics loss. Finally, we experimentally determine that our method accomplishes a $sim 2$x improvement in terms of task success rate over prior baselines in a suite of one-shot manipulation tasks.



rate research

Read More

Recent advancements in the area of deep learning have shown the effectiveness of very large neural networks in several applications. However, as these deep neural networks continue to grow in size, it becomes more and more difficult to configure their many parameters to obtain good results. Presently, analysts must experiment with many different configurations and parameter settings, which is labor-intensive and time-consuming. On the other hand, the capacity of fully automated techniques for neural network architecture search is limited without the domain knowledge of human experts. To deal with the problem, we formulate the task of neural network architecture optimization as a graph space exploration, based on the one-shot architecture search technique. In this approach, a super-graph of all candidate architectures is trained in one-shot and the optimal neural network is identified as a sub-graph. In this paper, we present a framework that allows analysts to effectively build the solution sub-graph space and guide the network search by injecting their domain knowledge. Starting with the network architecture space composed of basic neural network components, analysts are empowered to effectively select the most promising components via our one-shot search scheme. Applying this technique in an iterative manner allows analysts to converge to the best performing neural network architecture for a given application. During the exploration, analysts can use their domain knowledge aided by cues provided from a scatterplot visualization of the search space to edit different components and guide the search for faster convergence. We designed our interface in collaboration with several deep learning researchers and its final effectiveness is evaluated with a user study and two case studies.
208 - De-An Huang , Danfei Xu , Yuke Zhu 2019
We address one-shot imitation learning, where the goal is to execute a previously unseen task based on a single demonstration. While there has been exciting progress in this direction, most of the approaches still require a few hundred tasks for meta-training, which limits the scalability of the approaches. Our main contribution is to formulate one-shot imitation learning as a symbolic planning problem along with the symbol grounding problem. This formulation disentangles the policy execution from the inter-task generalization and leads to better data efficiency. The key technical challenge is that the symbol grounding is prone to error with limited training data and leads to subsequent symbolic planning failures. We address this challenge by proposing a continuous relaxation of the discrete symbolic planner that directly plans on the probabilistic outputs of the symbol grounding model. Our continuous relaxation of the planner can still leverage the information contained in the probabilistic symbol grounding and significantly improve over the baseline planner for the one-shot imitation learning tasks without using large training data.
Reward function specification, which requires considerable human effort and iteration, remains a major impediment for learning behaviors through deep reinforcement learning. In contrast, providing visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents. We consider a setting where an agent is provided a fixed dataset of visual demonstrations illustrating how to perform a task, and must learn to solve the task using the provided demonstrations and unsupervised environment interactions. This setting presents a number of challenges including representation learning for visual observations, sample complexity due to high dimensional spaces, and learning instability due to the lack of a fixed reward or learning signal. Towards addressing these challenges, we develop a variational model-based adversarial imitation learning (V-MAIL) algorithm. The model-based approach provides a strong signal for representation learning, enables sample efficiency, and improves the stability of adversarial training by enabling on-policy learning. Through experiments involving several vision-based locomotion and manipulation tasks, we find that V-MAIL learns successful visuomotor policies in a sample-efficient manner, has better stability compared to prior work, and also achieves higher asymptotic performance. We further find that by transferring the learned models, V-MAIL can learn new tasks from visual demonstrations without any additional environment interactions. All results including videos can be found online at url{https://sites.google.com/view/variational-mail}.
While we have made significant progress on understanding hand-object interactions in computer vision, it is still very challenging for robots to perform complex dexterous manipulation. In this paper, we propose a new platform and pipeline, DexMV (Dexterous Manipulation from Videos), for imitation learning to bridge the gap between computer vision and robot learning. We design a platform with: (i) a simulation system for complex dexterous manipulation tasks with a multi-finger robot hand and (ii) a computer vision system to record large-scale demonstrations of a human hand conducting the same tasks. In our new pipeline, we extract 3D hand and object poses from the videos, and convert them to robot demonstrations via motion retargeting. We then apply and compare multiple imitation learning algorithms with the demonstrations. We show that the demonstrations can indeed improve robot learning by a large margin and solve the complex tasks which reinforcement learning alone cannot solve. Project page with video: https://yzqin.github.io/dexmv
We consider the problem of learning multi-stage vision-based tasks on a real robot from a single video of a human performing the task, while leveraging demonstration data of subtasks with other objects. This problem presents a number of major challenges. Video demonstrations without teleoperation are easy for humans to provide, but do not provide any direct supervision. Learning policies from raw pixels enables full generality but calls for large function approximators with many parameters to be learned. Finally, compound tasks can require impractical amounts of demonstration data, when treated as a monolithic skill. To address these challenges, we propose a method that learns both how to learn primitive behaviors from video demonstrations and how to dynamically compose these behaviors to perform multi-stage tasks by watching a human demonstrator. Our results on a simulated Sawyer robot and real PR2 robot illustrate our method for learning a variety of order fulfillment and kitchen serving tasks with novel objects and raw pixel inputs.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا