Do you want to publish a course? Click here

Supercurrent-Controlled Kinetic Inductance Superconducting Memory

57   0   0.0 ( 0 )
 Added by Irina Burkova Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report superconducting kinetic inductance memory (SKIM) element, which can be controlled exclusively by the bias supercurrent, without involving magnetic fields and heating elements. The SKIM is non-volatile memory. The device is made of Nb and it can operate reliable up to 2.8 K. The achieved error rate is as low as one in 100000 operations.



rate research

Read More

Investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation. While concurrent progress in additive manufacturing, `3D printing, opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the first synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. We find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature is in agreement with DC resistance measurements. While the lower transition temperature, not previously known in literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of $8pm3{mu}$m - roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors. This large London penetration depth suggests that Ti-6Al-4V may be a suitable material for high kinetic inductance applications such as single photon counting or parametric amplification used in quantum computing.
Samples were examined using a superconducting (Nb) neutron imaging system employing a delay-line technique which in previous studies was shown to have high spatial resolution. We found excellent correspondence between neutron transmission and scanning electron microscope (SEM) images of Gd islands with sizes between 15 and 130 micrometer which were thermally-sprayed onto a Si substrate. Neutron transmission images could be used to identify tiny voids in a thermally-sprayed continuous Gd2O3 film on a Si substrate which could not be seen in SEM images. We also found that neutron transmission images revealed pattern formations, mosaic features and co-existing dendritic phases in Woods metal samples with constituent elements Bi, Pb, Sn and Cd. These results demonstrate the merits of the current-biased kinetic inductance detector (CB-KID) system for practical studies in materials science. Moreover, we found that operating the detector at a more optimal temperature (7.9 K) appreciably improved the effective detection efficiency when compared to previous studies conducted at 4 K. This is because the effective size of hot-spots in the superconducting meanderline planes increases with temperature, which makes particle detections more likely.
A simple method has been developed for manufacturing a thin film superconducting quantum interferometer (SQI) with ultralow inductance (~10^-13 H). Current-voltage and voltage-field characteristics of the SQI are presented. The basic design equations are obtained and confirmed experimentally. The SQI has been used for the first time to determine the penetration depth of a magnetic field into a film of 50% In-50% Sn alloy.
We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone we are able to generate parametric amplification using three-wave mixing. The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. Compared to similarly constructed four-wave mixing amplifiers, these devices operate with the RF pump at $sim$20 dB lower power and at frequencies far from the signal. This will permit easier integration into large scale qubit and detector applications.
Boron-doped diamond granular thin films are known to exhibit superconductivity with an optimal critical temperature of Tc = 7.2K. Here we report the measured complex surface impedance of Boron-doped diamond films in the microwave frequency range using a resonant technique. Experimentally measured inductance values are in good agreement with estimates obtained from the normal state sheet resistance of the material. The magnetic penetration depth temperature dependence is consistent with that of a fully-gapped s-wave superconductor. Boron-doped diamond films should find application where high kinetic inductance is needed, such as microwave kinetic inductance detectors and quantum impedance devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا