No Arabic abstract
Dzyaloshinskii-Moriya interaction (DMI) is vital to form various chiral spin textures, novel behaviors of magnons and permits their potential applications in energy-efficient spintronic devices. Here, we realize a sizable bulk DMI in a transition metal dichalcogenide (TMD) 2H-TaS2 by intercalating Fe atoms, which form the chiral supercells with broken spatial inversion symmetry and also act as the source of magnetic orderings. Using a newly developed protonic gate technology, gate-controlled protons intercalation could further change the carrier density and intensely tune DMI via the Ruderman-Kittel-Kasuya-Yosida mechanism. The resultant giant topological Hall resistivity of 1.4 uohm.cm at -5.2V (about 460% of the zero-bias value) is larger than most of the known magnetic materials. Theoretical analysis indicates that such a large topological Hall effect originates from the two-dimensional Bloch-type chiral spin textures stabilized by DMI, while the large anomalous Hall effect comes from the gapped Dirac nodal lines by spin-orbit interaction. Dual-intercalation in 2HTaS2 provides a model system to reveal the nature of DMI in the large family of TMDs and a promising way of gate tuning of DMI, which further enables an electrical control of the chiral spin textures and related electromagnetic phenomena.
We examine the current-induced dynamics of a skyrmion that is subject to both structural and bulk inversion asymmetry. There arises a hybrid type of Dzyaloshinskii-Moriya interaction (DMI) which is in the form of a mixture of interfacial and bulk DMIs. Examples include crystals with symmetry classes C$_n$ as well as magnetic multilayers composed of a ferromagnet with a noncentrosymmetric crystal and a nonmagnet with strong spin-orbit coupling. As a striking result, we find that, in systems with a hybrid DMI, the spin-orbit-torque-induced skyrmion Hall angle is asymmetric for the two different skyrmion polarities ($pm 1$ given by out-of-plane core magnetization), even allowing one of them to be tuned to zero. We propose several experimental ways to achieve the necessary straight skyrmion motion (with zero Hall angle) for racetrack memories, even without antiferromagnetic interactions or any interaction with another magnet. Our results can be understood within a simple picture by using a global spin rotation which maps the hybrid DMI model to an effective model containing purely interfacial DMI. The formalism directly reveals the effective spin torque and effective current that result in qualitatively different dynamics. Our work provides a way to utilize symmetry breaking to eliminate detrimental phenomena as hybrid DMI eliminates the skyrmion Hall angle.
The Dzyaloshinskii-Moriya interaction (DMI), being one of the origins for chiral magnetism, is currently attracting huge attention in the research community focusing on applied magnetism and spintronics. For future applications an accurate measurement of its strength is indispensable. In this work, we present a review of the state of the art of measuring the coefficient $D$ of the Dzyaloshinskii-Moriya interaction, the DMI constant, focusing on systems where the interaction arises from the interface between two materials. The measurement techniques are divided into three categories: a) domain wall based measurements, b) spin wave based measurements and c) spin orbit torque based measurements. We give an overview of the experimental techniques as well as their theoretical background and models for the quantification of the DMI constant $D$. We analyze the advantages and disadvantages of each method and compare $D$ values in different stacks. The review aims to obtain a better understanding of the applicability of the different techniques to different stacks and of the origin of apparent disagreement of literature values.
The long wavelength moire superlattices in twisted 2D structures have emerged as a highly tunable platform for strongly correlated electron physics. We study the moire bands in twisted transition metal dichalcogenide homobilayers, focusing on WSe$_2$, at small twist angles using a combination of first principles density functional theory, continuum modeling, and Hartree-Fock approximation. We reveal the rich physics at small twist angles $theta<4^circ$, and identify a particular magic angle at which the top valence moire band achieves almost perfect flatness. In the vicinity of this magic angle, we predict the realization of a generalized Kane-Mele model with a topological flat band, interaction-driven Haldane insulator, and Mott insulators at the filling of one hole per moire unit cell. The combination of flat dispersion and uniformity of Berry curvature near the magic angle holds promise for realizing fractional quantum anomalous Hall effect at fractional filling. We also identify twist angles favorable for quantum spin Hall insulators and interaction-induced quantum anomalous Hall insulators at other integer fillings.
We explore the emergence of chiral magnetism in one-dimensional monatomic Mn, Fe, and Co chains deposited at the Pt(664) step-edge carrying out an ab-initio study based on density functional theory (DFT). The results are analyzed employing several models: (i) a micromagnetic model, which takes into account the Dzyaloshinskii-Moriya interaction (DMI) besides the spin stiffness and the magnetic anisotropy energy, and (ii) the Fert-Levy model of the DMI for diluted magnetic impurities in metals. Due to the step-edge geometry, the direction of the Dzyaloshinskii vector (D-vector) is not predetermined by symmetry and points in an off-symmetry direction. For the Mn chain we predict a long-period cycloidal spin-spiral ground state of unique rotational sense on top of an otherwise atomic-scale antiferromagnetic phase. The spins rotate in a plane that is tilted relative to the Pt surface by $62^circ$ towards the upper step of the surface. The Fe and Co chains show a ferromagnetic ground state since the DMI is too weak to overcome their respective magnetic anisotropy barriers. Beyond the discussion of the monatomic chains we provide general expressions relating ab-initio results to realistic model parameters that occur in a spin-lattice or in a micromagnetic model. We prove that a planar homogeneous spiral of classical spins with a given wave vector rotating in a plane whose normal is parallel to the D-vector is an exact stationary state solution of a spin-lattice model for a periodic solid that includes Heisenberg exchange and DMI. The validity of the Fert-Levy model for the evaluation of micromagnetic DMI parameters and for the analysis of ab-initio calculations is explored for chains. The results suggest that some care has to be taken when applying the model to infinite periodic one-dimensional systems.
We show a method to control magnetic interfacial effects in multilayers with Dzyaloshinskii-Moriya interaction (DMI) using helium (He$^{+}$) ion irradiation. We compare results from SQUID magnetometry, ferromagnetic resonance as well as Brillouin light scattering results on multilayers with DMI as a function of irradiation fluence to study the effect of irradiation on the magnetic properties of the multilayers. Our results show clear evidence of the He$^{+}$ irradiation effects on the magnetic properties which is consistent with interface modification due to the effects of the He$^{+}$ irradiation. This external degree of freedom offers promising perspectives to further improve the control of magnetic skyrmions in multilayers, that could push them towards integration in future technologies, such as in low-power neuromorphic computing.