Do you want to publish a course? Click here

Measuring interfacial Dzyaloshinskii-Moriya interaction in ultra-thin magnetic films

87   0   0.0 ( 0 )
 Added by Gianfranco Durin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Dzyaloshinskii-Moriya interaction (DMI), being one of the origins for chiral magnetism, is currently attracting huge attention in the research community focusing on applied magnetism and spintronics. For future applications an accurate measurement of its strength is indispensable. In this work, we present a review of the state of the art of measuring the coefficient $D$ of the Dzyaloshinskii-Moriya interaction, the DMI constant, focusing on systems where the interaction arises from the interface between two materials. The measurement techniques are divided into three categories: a) domain wall based measurements, b) spin wave based measurements and c) spin orbit torque based measurements. We give an overview of the experimental techniques as well as their theoretical background and models for the quantification of the DMI constant $D$. We analyze the advantages and disadvantages of each method and compare $D$ values in different stacks. The review aims to obtain a better understanding of the applicability of the different techniques to different stacks and of the origin of apparent disagreement of literature values.



rate research

Read More

We report current-induced domain wall motion (CIDWM) in TaCo20Fe60B20MgO nanowires. Domain walls are observed to move against the electron flow when no magnetic field is applied, while a field along the nanowires strongly affects the domain wall motion direction and velocity. A symmetric effect is observed for up-down and down-up domain walls. This indicates the presence of right-handed domain walls, due to a Dzyaloshinskii-Moriya interaction (DMI) with a DMI coefficient D=+0.06 mJ/m2. The positive DMI coefficient is interpreted to be a consequence of boron diffusion into the tantalum buffer layer during annealing. In a PtCo68Fe22B10MgO nanowire CIDWM along the electron flow was observed, corroborating this interpretation. The experimental results are compared to 1D-model simulations including the effects of pinning. This advanced modelling allows us to reproduce the experiment outcomes and reliably extract a spin-Hall angle {theta}SH=-0.11 for Ta in the nanowires, showing the importance of an analysis that goes beyond the currently used model for perfect nanowires.
To stabilize the non-trivial spin textures, e.g., skyrmions or chiral domain walls in ultrathin magnetic films, an additional degree of freedom such as the interfacial Dzyaloshinskii-Moriya interaction (IDMI) must be induced by the strong spin-orbit coupling (SOC) of a stacked heavy metal layer. However, advanced approaches to simultaneously control IDMI and perpendicular magnetic anisotropy (PMA) are needed for future spin-orbitronic device implementations. Here, we show an effect of atomic-scale surface modulation on the magnetic properties and IDMI in ultrathin films composed of 5d heavy metal/ferromagnet/4d(5d) heavy metal or oxide interfaces, such as Pt/CoFeSiB/Ru, Pt/CoFeSiB/Ta, and Pt/CoFeSiB/MgO. The maximum IDMI value corresponds to the correlated roughness of the bottom and top interfaces of the ferromagnetic layer. The proposed approach for significant enhancement of PMA and IDMI through the interface roughness engineering at the atomic scale offers a powerful tool for the development of the spin-orbitronic devices with the precise and reliable controllability of their functionality.
We studied electric field modification of magnetic properties in a Pt/Co/AlO$_x$ trilayer via magneto-optical Kerr microscopy. We observed the spontaneous formation of labyrinthine magnetic domain structure due to thermally activated domain nucleation and propagation under zero applied magnetic field. A variation of the period of the labyrinthine structure under electric field is observed as well as saturation magnetization and magnetic anisotropy variations. Using an analytical formula of the stripe equilibrium width we estimate the variation of the interfacial Dzyaloshinskii-Moriya interaction under electric field as function of the exchange stiffness constant.
We study the magnetic properties of perpendicularly magnetised Pt/Co/Ir thin films and investigate the domain wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultra-thin films. Measurements of the Co layer thickness dependence of saturation magnetisation, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e. DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter $alpha$, we find that both $alpha$ and the velocity scaling parameter $v_{0}$ change as a function of in-plane bias field.
The interfacial Dzyaloshinskii-Moriya interaction (iDMI) is attracting great interests for spintronics. An iDMI constant larger than 3 mJ/m^2 is expected to minimize the size of skyrmions and to optimize the DW dynamics. In this study, we experimentally demonstrate an enhanced iDMI in Pt/Co/X/MgO ultra-thin film structures with perpendicular magnetization. The iDMI constants were measured using a field-driven creep regime domain expansion method. The enhancement of iDMI with an atomically thin insertion of Ta and Mg is comprehensively understood with the help of ab-initio calculations. Thermal annealing has been used to crystallize the MgO thin layer for improving tunneling magneto-resistance (TMR), but interestingly it also provides a further increase of the iDMI constant. An increase of the iDMI constant up to 3.3 mJ/m^2 is shown, which could be promising for the scaling down of skyrmion electronics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا