Do you want to publish a course? Click here

Understanding The Role of Magnetic and Magneto-Quasistatic Fields in Human Body Communication

101   0   0.0 ( 0 )
 Added by Mayukh Nath
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

With the advent of wearable technologies, Human Body Communication (HBC) has emerged as a physically secure and power-efficient alternative to the otherwise ubiquitous Wireless Body Area Network (WBAN). Whereas the most investigated nodes of HBC have been Electric and Electro-quasistatic (EQS) Capacitive and Galvanic, recently Magnetic HBC (M-HBC) has been proposed as a viable alternative. Previous works have investigated M-HBC through an application point of view, without developing a fundamental working principle for the same. In this paper, for the first time, a ground up analysis has been performed to study the possible effects and contributions of the human body channel in M-HBC over a broad frequency range (1kHz to 10 GHz), by detailed electromagnetic simulations and supporting experiments. The results show that while M-HBC can be successfully operated as a body area network, the human body itself plays a minimal or negligible role in its functionality. For frequencies less than about 30 MHz, in the domain of operation of Magneto-quasistatic (MQS) HBC, the human body is transparent to the quasistatic magnetic field. Conversely for higher frequencies, the conductive nature of human tissues end up attenuating Magnetic HBC fields due to Eddy currents induced in body tissues, eliminating the possibility of the body to support efficient waveguide modes. With this better understanding at hand, different modes of operations of MQS HBC have been outlined for both high impedance capacitive and 50 Ohm termination cases, and their performances have been compared with EQS HBC for similar sized devices, over varying distance between TX and RX. The resulting report presents the first fundamental understanding towards M-HBC operation and its contrast with EQS HBC, aiding HBC device designers to make educated design decisions, depending on mode of applications.



rate research

Read More

Radiative communication using electromagnetic fields is the backbone of todays wirelessly connected world, which implies that the physical signals are available for malicious interceptors to snoop within a 5-10 m distance, also increasing interference and reducing channel capacity. Recently, Electro-quasistatic (EQS) human body communication was demonstrated which utilizes the human bodys conductive properties to communicate without radiating the signals outside the body. Previous experiments showed that an attack with an antenna is unsuccessful, more than 1 cm of the body surface and 15 cm of an EQS-HBC device. However, since this is a new communication modality, it calls for investigation of new attack modalities - that can potentially exploit the physics utilized in the EQS-HBC to break the system. In this study, we present a novel attack method for EQS-HBC devices, using the body of the attacker itself as a coupling surface and capacitive inter-body coupling between the user and the attacker. We develop theoretical understanding backed by experimental results for inter-body coupling, as a function of distance between the subjects. We utilize this newly developed understanding to design EQS-HBC transmitters to minimize the attack distance through inter-body coupling as well as minimize the interference among multiple EQS-HBC users due to inter-body coupling. This understanding allows us to develop more secure and robust EQS-HBC based body area networks in the future.
Unmanned aerial vehicle (UAV) swarm has emerged as a promising novel paradigm to achieve better coverage and higher capacity for future wireless network by exploiting the more favorable line-of-sight (LoS) propagation. To reap the potential gains of UAV swarm, the remote control signal sent by ground control unit (GCU) is essential, whereas the control signal quality are susceptible in practice due to the effect of the adjacent channel interference (ACI) and the external interference (EI) from radiation sources distributed across the region. To tackle these challenges, this paper considers priority-aware resource coordination in a multi-UAV communication system, where multiple UAVs are controlled by a GCU to perform certain tasks with a pre-defined trajectory. Specifically, we maximize the minimum signal-to-interference-plus-noise ratio (SINR) among all the UAVs by jointly optimizing channel assignment and power allocation strategy under stringent resource availability constraints. According to the intensity of ACI, we consider the corresponding problem in two scenarios, i.e., Null-ACI and ACI systems. By virtue of the particular problem structure in Null-ACI case, we first recast the formulation into an equivalent yet more tractable form and obtain the global optimal solution via Hungarian algorithm. For general ACI systems, we develop an efficient iterative algorithm for its solution based on the smooth approximation and alternating optimization methods. Extensive simulation results demonstrate that the proposed algorithms can significantly enhance the minimum SINR among all the UAVs and adapt the allocation of communication resources to diverse mission priority.
We introduce a hash chain-based secure cluster. Here, secure cluster refers to a set of vehicles having vehicular secrecy capacity of more than a reference value. Since vehicle communication is performed in such a secure cluster, basically secure vehicle communication can be expected. Secure hash clusters can also be expected by sharing hash chains derived from vehicle identification numbers. We are also convinced that our paper is essential for future autonomous vehicles by providing secure clustering services using MEC. In the near term, autonomous driving, our paper makes it possible to expect strong and practically safe vehicle communications.
A combination of observation, theory, modeling, and laboratory plasma experiments provides a multifaceted approach to develop a much greater understanding of how magnetic fields arise in galactic settings and how these magnetic fields mediate important processes that affect the dynamics, distribution, and composition of galactic plasmas. An important emphasis below is the opportunity to connect laboratory experiments to astrophysics. This approach is especially compelling for the galactic neighborhood, where the distribution and character of magnetic fields can be observed with greater detail than what is possible elsewhere in the universe. The ability to produce laboratory plasmas with unparalleled accessibility permits an even greater level of detail to be assessed and exposed. Theory and modeling provide fundamental ways to understand important processes, and they act as the bridge to connect experimental validation to astronomical observations. In many cases the studies that utilize this approach can make use of existing laboratory facilities, resulting in a cost that is quite small compared to the cost of measurements in dedicated space missions.
148 - M. Seminara , T. Nawaz , S. Caputo 2020
This paper reports a detailed experimental characterization of optical performances of Visible Light Communication (VLC) system using a real traffic light for ultra-low latency, infrastructure-to-vehicle (I2V) communications for intelligent transportation systems (ITS) protocols. Despite the implementation of long sought ITS protocols poses the crucial need to detail how the features of optical stages influence the overall performances of a VLC system in realistic configurations, such characterization has rarely been addressed at present. We carried out an experimental investigation in a realistic configuration where a regular traffic light (TX), enabled for VLC transmission, sends digital information towards a receiving stage (RX), composed by an optical condenser and a dedicated amplified photodiode stage. We performed a detailed measurements campaign of VLC performances encompassing a broad set of optical condensers, and for TX-RX distances in the range 3 - 50 m, in terms of both effective field of view (EFOV) and packet error rate (PER). The results show several nontrivial behaviors for different lens sets as a function of position on the measurement grid, highlighting critical aspects as well as identifying most suitable optical configurations depending on the specific application and on the required EFOV. In this paper we also provide a theoretical model for both the signal intensity and the EFOV as a function of several parameters, such as distance, RX orientation and focal length of the specific condenser. Our results could be very relevant in the near future to assess a most suited solution in terms of acceptance angle when designing a VLC system for real applications, where angle-dependent misalignment effects play a non-negligible role, and we argue that it could have more general implications with respect to the pristine I2V case mentioned here.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا