No Arabic abstract
We examine a modification of the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) process in which the diffusing substance requires a parent density field for reproduction. A biological example would be the density of diffusing spores (propagules) and the density of a stationary fungus (parent). The parent produces propagules at a certain rate, and the propagules turn into the parent substance at another rate. We model this evolution by the FKPP process with delay, which reflects a finite time typically required for a new parent to mature before it begins to produce propagules. While the FKPP process with other types of delays have been considered in the past as a pure mathematical construct, in our work a delay in the FKPP model arises in a natural science setting. The speed of the resulting density fronts is shown to decrease with increasing delay time, and has a non-trivial dependence on the rate of conversion of propagules into the parent substance. Remarkably, the fronts in this model are always slower than Fisher waves of the classical FKPP model. The largest speed is half of the classical value, and it is achieved at zero delay and when the two rates are matched.
Bacterial quorum sensing is the communication that takes place between bacteria as they secrete certain molecules into the intercellular medium that later get absorbed by the secreting cells themselves and by others. Depending on cell density, this uptake has the potential to alter gene expression and thereby affect global properties of the community. We consider the case of multiple bacterial species coexisting, referring to each one of them as a genotype and adopting the usual denomination of the molecules they collectively secrete as public goods. A crucial problem in this setting is characterizing the coevolution of genotypes as some of them secrete public goods (and pay the associated metabolic costs) while others do not but may nevertheless benefit from the available public goods. We introduce a network model to describe genotype interaction and evolution when genotype fitness depends on the production and uptake of public goods. The model comprises a random graph to summarize the possible evolutionary pathways the genotypes may take as they interact genetically with one another, and a system of coupled differential equations to characterize the behavior of genotype abundance in time. We study some simple variations of the model analytically and more complex variations computationally. Our results point to a simple trade-off affecting the long-term survival of those genotypes that do produce public goods. This trade-off involves, on the producer side, the impact of producing and that of absorbing the public good. On the non-producer side, it involves the impact of absorbing the public good as well, now compounded by the molecular compatibility between the producer and the non-producer. Depending on how these factors turn out, producers may or may not survive.
We study how the complexity of evolutionary dynamics in the classic MacArthur consumer-resource model depends on resource uptake and utilization rates. The traditional assumption in such models is that the utilization rate of the consumer is proportional to the uptake rate. More generally, we show that if these two rates are related through a power law (which includes the traditional assumption as a special case), then the resulting evolutionary dynamics in the consumer is necessarily a simple hill-climbing process leading to an evolutionary equilibrium, regardless of the dimension of phenotype space. When utilization and uptake rates are not related by a power law, more complex evolutionary trajectories can occur, including the chaotic dynamics observed in previous studies for high-dimensional phenotype spaces. These results draw attention to the importance of distinguishing between utilization and uptake rates in consumer-resource models.
We study a simple realistic model for describing the diffusion of an infectious disease on a population of individuals. The dynamics is governed by a single functional delay differential equation, which, in the case of a large population, can be solved exactly, even in the presence of a time-dependent infection rate. This delay model has a higher degree of accuracy than that of the so-called SIR model, commonly used in epidemiology, which, instead, is formulated in terms of ordinary differential equations. We apply this model to describe the outbreak of the new infectious disease, Covid-19, in Italy, taking into account the containment measures implemented by the government in order to mitigate the spreading of the virus and the social costs for the population.
Environmental changes greatly influence the evolution of populations. Here, we study the dynamics of a population of two strains, one growing slightly faster than the other, competing for resources in a time-varying binary environment modeled by a carrying capacity switching either randomly or periodically between states of abundance and scarcity. The population dynamics is characterized by demographic noise (birth and death events) coupled to a varying environment. We elucidate the similarities and differences of the evolution subject to a stochastically- and periodically-varying environment. Importantly, the population size distribution is generally found to be broader under intermediate and fast random switching than under periodic variations, which results in markedly different asymptotic behaviors between the fixation probability of random and periodic switching. We also determine the detailed conditions under which the fixation probability of the slow strain is maximal.
We study the dynamics of colonization of a territory by a stochastic population at low immigration pressure. We assume a sufficiently strong Allee effect that introduces, in deterministic theory, a large critical population size for colonization. At low immigration rates, the average pre-colonization population size is small thus invalidating the WKB approximation to the master equation. We circumvent this difficulty by deriving an exact zero-flux solution of the master equation and matching it with an approximate non-zero-flux solution of the pertinent Fokker-Planck equation in a small region around the critical population size. This procedure provides an accurate evaluation of the quasi-stationary probability distribution of population sizes in the pre-colonization state, and of the mean time to colonization, for a wide range of immigration rates. At sufficiently high immigration rates our results agree with WKB results obtained previously. At low immigration rates the results can be very different.