No Arabic abstract
Bacterial quorum sensing is the communication that takes place between bacteria as they secrete certain molecules into the intercellular medium that later get absorbed by the secreting cells themselves and by others. Depending on cell density, this uptake has the potential to alter gene expression and thereby affect global properties of the community. We consider the case of multiple bacterial species coexisting, referring to each one of them as a genotype and adopting the usual denomination of the molecules they collectively secrete as public goods. A crucial problem in this setting is characterizing the coevolution of genotypes as some of them secrete public goods (and pay the associated metabolic costs) while others do not but may nevertheless benefit from the available public goods. We introduce a network model to describe genotype interaction and evolution when genotype fitness depends on the production and uptake of public goods. The model comprises a random graph to summarize the possible evolutionary pathways the genotypes may take as they interact genetically with one another, and a system of coupled differential equations to characterize the behavior of genotype abundance in time. We study some simple variations of the model analytically and more complex variations computationally. Our results point to a simple trade-off affecting the long-term survival of those genotypes that do produce public goods. This trade-off involves, on the producer side, the impact of producing and that of absorbing the public good. On the non-producer side, it involves the impact of absorbing the public good as well, now compounded by the molecular compatibility between the producer and the non-producer. Depending on how these factors turn out, producers may or may not survive.
Finding ways to overcome the temptation to exploit one another is still a challenge in behavioural sciences. In the framework of evolutionary game theory, punishing strategies are frequently used to promote cooperation in competitive environments. Here, we introduce altruistic punishers in the spatial public goods game. This strategy acts as a cooperator in the absence of defectors, otherwise it will punish all defectors in their vicinity while bearing a cost to do so. We observe three distinct behaviours in our model: i) in the absence of punishers, cooperators (who dont punish defectors) are driven to extinction by defectors for most parameter values; ii) clusters of punishers thrive by sharing the punishment costs when these are low iii) for higher punishment costs, punishers, when alone, are subject to exploitation but in the presence of cooperators can form a symbiotic spatial structure that benefits both. This last observation is our main finding since neither cooperation nor punishment alone can survive the defector strategy in this parameter region and the specificity of the symbiotic spatial configuration shows that lattice topology plays a central role in sustaining cooperation. Results were obtained by means of Monte Carlo simulations on a square lattice and subsequently confirmed by a pairwise comparison of different strategies payoffs in diverse group compositions, leading to a phase diagram of the possible states.
We propose a mathematical model for collective sensing in a population growing in a stochastically varying environment. In the population, individuals use an information channel for sensing the environment, and two channels for signal production and comprehension to communicate among themselves. We show that existence of such system has a positive effect on population growth, hence can have a positive evolutionary effect. We show that the gain in growth due to the collective sensing is related to information theoretic entities, which can be considered as the information content of this system from the environment. We further show that heterogeneity in communication resulted from network or spatial structure increases growth. We compute the growth rate of a population residing on a lattice and show that growth rate near the maximum noise level in observation or communication, increases exponentially as noise decreases. This exponential effect makes the emergence of collective observation an easy outcome in an evolutionary process. Furthermore, we are able to quantify interesting effects such as accelerated growth, and simplification of decision making due to information amplification by communication. Finally, we show that an amount of noise in representation formation has more disadvantageous effect compared to the same noise in signal production.
We examine a modification of the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) process in which the diffusing substance requires a parent density field for reproduction. A biological example would be the density of diffusing spores (propagules) and the density of a stationary fungus (parent). The parent produces propagules at a certain rate, and the propagules turn into the parent substance at another rate. We model this evolution by the FKPP process with delay, which reflects a finite time typically required for a new parent to mature before it begins to produce propagules. While the FKPP process with other types of delays have been considered in the past as a pure mathematical construct, in our work a delay in the FKPP model arises in a natural science setting. The speed of the resulting density fronts is shown to decrease with increasing delay time, and has a non-trivial dependence on the rate of conversion of propagules into the parent substance. Remarkably, the fronts in this model are always slower than Fisher waves of the classical FKPP model. The largest speed is half of the classical value, and it is achieved at zero delay and when the two rates are matched.
Darwinian evolution can be modeled in general terms as a flow in the space of fitness (i.e. reproductive rate) distributions. In the diffusion approximation, Tsimring et al. have showed that this flow admits fitness wave solutions: Gaussian-shape fitness distributions moving towards higher fitness values at constant speed. Here we show more generally that evolving fitness distributions are attracted to a one-parameter family of distributions with a fixed parabolic relationship between skewness and kurtosis. Unlike fitness waves, this statistical pattern encompasses both positive and negative (a.k.a. purifying) selection and is not restricted to rapidly adapting populations. Moreover we find that the mean fitness of a population under the selection of pre-existing variation is a power-law function of time, as observed in microbiological evolution experiments but at variance with fitness wave theory. At the conceptual level, our results can be viewed as the resolution of the dynamic insufficiency of Fishers fundamental theorem of natural selection. Our predictions are in good agreement with numerical simulations.
Many socio-economic and biological processes can be modeled as systems of interacting individuals. The behaviour of such systems can be often described within game-theoretic models. In these lecture notes, we introduce fundamental concepts of evolutionary game theory and review basic properties of deterministic replicator dynamics and stochastic dynamics of finite populations. We discuss stability of equilibria in deterministic dynamics with migration, time-delay, and in stochastic dynamics of well-mixed populations and spatial games with local interactions. We analyze the dependence of the long-run behaviour of a population on various parameters such as the time delay, the noise level, and the size of the population.