Do you want to publish a course? Click here

A note on the complexity of evolutionary dynamics in a classic consumer-resource model

98   0   0.0 ( 0 )
 Added by Iaroslav Ispolatov
 Publication date 2018
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

We study how the complexity of evolutionary dynamics in the classic MacArthur consumer-resource model depends on resource uptake and utilization rates. The traditional assumption in such models is that the utilization rate of the consumer is proportional to the uptake rate. More generally, we show that if these two rates are related through a power law (which includes the traditional assumption as a special case), then the resulting evolutionary dynamics in the consumer is necessarily a simple hill-climbing process leading to an evolutionary equilibrium, regardless of the dimension of phenotype space. When utilization and uptake rates are not related by a power law, more complex evolutionary trajectories can occur, including the chaotic dynamics observed in previous studies for high-dimensional phenotype spaces. These results draw attention to the importance of distinguishing between utilization and uptake rates in consumer-resource models.

rate research

Read More

The competitive exclusion principle asserts that coexisting species must occupy distinct ecological niches (i.e. the number of surviving species can not exceed the number of resources). An open question is to understand if and how different resource dynamics affect this bound. Here, we analyze a generalized consumer resource model with externally supplied resources and show that -- in contrast to self-renewing resources -- species can occupy only half of all available environmental niches. This motivates us to construct a new schema for classifying ecosystems based on species packing properties.
Darwinian evolution can be modeled in general terms as a flow in the space of fitness (i.e. reproductive rate) distributions. In the diffusion approximation, Tsimring et al. have showed that this flow admits fitness wave solutions: Gaussian-shape fitness distributions moving towards higher fitness values at constant speed. Here we show more generally that evolving fitness distributions are attracted to a one-parameter family of distributions with a fixed parabolic relationship between skewness and kurtosis. Unlike fitness waves, this statistical pattern encompasses both positive and negative (a.k.a. purifying) selection and is not restricted to rapidly adapting populations. Moreover we find that the mean fitness of a population under the selection of pre-existing variation is a power-law function of time, as observed in microbiological evolution experiments but at variance with fitness wave theory. At the conceptual level, our results can be viewed as the resolution of the dynamic insufficiency of Fishers fundamental theorem of natural selection. Our predictions are in good agreement with numerical simulations.
100 - Jacek Miekisz 2007
Many socio-economic and biological processes can be modeled as systems of interacting individuals. The behaviour of such systems can be often described within game-theoretic models. In these lecture notes, we introduce fundamental concepts of evolutionary game theory and review basic properties of deterministic replicator dynamics and stochastic dynamics of finite populations. We discuss stability of equilibria in deterministic dynamics with migration, time-delay, and in stochastic dynamics of well-mixed populations and spatial games with local interactions. We analyze the dependence of the long-run behaviour of a population on various parameters such as the time delay, the noise level, and the size of the population.
Bacterial quorum sensing is the communication that takes place between bacteria as they secrete certain molecules into the intercellular medium that later get absorbed by the secreting cells themselves and by others. Depending on cell density, this uptake has the potential to alter gene expression and thereby affect global properties of the community. We consider the case of multiple bacterial species coexisting, referring to each one of them as a genotype and adopting the usual denomination of the molecules they collectively secrete as public goods. A crucial problem in this setting is characterizing the coevolution of genotypes as some of them secrete public goods (and pay the associated metabolic costs) while others do not but may nevertheless benefit from the available public goods. We introduce a network model to describe genotype interaction and evolution when genotype fitness depends on the production and uptake of public goods. The model comprises a random graph to summarize the possible evolutionary pathways the genotypes may take as they interact genetically with one another, and a system of coupled differential equations to characterize the behavior of genotype abundance in time. We study some simple variations of the model analytically and more complex variations computationally. Our results point to a simple trade-off affecting the long-term survival of those genotypes that do produce public goods. This trade-off involves, on the producer side, the impact of producing and that of absorbing the public good. On the non-producer side, it involves the impact of absorbing the public good as well, now compounded by the molecular compatibility between the producer and the non-producer. Depending on how these factors turn out, producers may or may not survive.
Spatial patterning can be crucially important for understanding the behavior of interacting populations. Here we investigate a simple model of parasite and host populations in which parasites are random walkers that must come into contact with a host in order to reproduce. We focus on the spatial arrangement of parasites around a single host, and we derive using analytics and numerical simulations the necessary conditions placed on the parasite fecundity and lifetime for the populations long-term survival. We also show that the parasite population can be pushed to extinction by a large drift velocity, but, counterintuitively, a small drift velocity generally increases the parasite population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا