Do you want to publish a course? Click here

Perception Matters: Exploring Imperceptible and Transferable Anti-forensics for GAN-generated Fake Face Imagery Detection

126   0   0.0 ( 0 )
 Added by Yongwei Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recently, generative adversarial networks (GANs) can generate photo-realistic fake facial images which are perceptually indistinguishable from real face photos, promoting research on fake face detection. Though fake face forensics can achieve high detection accuracy, their anti-forensic counterparts are less investigated. Here we explore more textit{imperceptible} and textit{transferable} anti-forensics for fake face imagery detection based on adversarial attacks. Since facial and background regions are often smooth, even small perturbation could cause noticeable perceptual impairment in fake face images. Therefore it makes existing adversarial attacks ineffective as an anti-forensic method. Our perturbation analysis reveals the intuitive reason of the perceptual degradation issue when directly applying existing attacks. We then propose a novel adversarial attack method, better suitable for image anti-forensics, in the transformed color domain by considering visual perception. Simple yet effective, the proposed method can fool both deep learning and non-deep learning based forensic detectors, achieving higher attack success rate and significantly improved visual quality. Specially, when adversaries consider imperceptibility as a constraint, the proposed anti-forensic method can improve the average attack success rate by around 30% on fake face images over two baseline attacks. textit{More imperceptible} and textit{more transferable}, the proposed method raises new security concerns to fake face imagery detection. We have released our code for public use, and hopefully the proposed method can be further explored in related forensic applications as an anti-forensic benchmark.



rate research

Read More

Fake face detection is a significant challenge for intelligent systems as generative models become more powerful every single day. As the quality of fake faces increases, the trained models become more and more inefficient to detect the novel fake faces, since the corresponding training data is considered outdated. In this case, robust One-Shot learning methods is more compatible with the requirements of changeable training data. In this paper, we propose a universal One-Shot GAN generated fake face detection method which can be used in significantly different areas of anomaly detection. The proposed method is based on extracting out-of-context objects from faces via scene understanding models. To do so, we use state of the art scene understanding and object detection methods as a pre-processing tool to detect the weird objects in the face. Second, we create a bag of words given all the detected out-of-context objects per all training data. This way, we transform each image into a sparse vector where each feature represents the confidence score related to each detected object in the image. Our experiments show that, we can discriminate fake faces from real ones in terms of out-of-context features. It means that, different sets of objects are detected in fake faces comparing to real ones when we analyze them with scene understanding and object detection models. We prove that, the proposed method can outperform previous methods based on our experiments on Style-GAN generated fake faces.
157 - Quanyu Liao , Yuezun Li , Xin Wang 2021
Fooling people with highly realistic fake images generated with Deepfake or GANs brings a great social disturbance to our society. Many methods have been proposed to detect fake images, but they are vulnerable to adversarial perturbations -- intentionally designed noises that can lead to the wrong prediction. Existing methods of attacking fake image detectors usually generate adversarial perturbations to perturb almost the entire image. This is redundant and increases the perceptibility of perturbations. In this paper, we propose a novel method to disrupt the fake image detection by determining key pixels to a fake image detector and attacking only the key pixels, which results in the $L_0$ and the $L_2$ norms of adversarial perturbations much less than those of existing works. Experiments on two public datasets with three fake image detectors indicate that our proposed method achieves state-of-the-art performance in both white-box and black-box attacks.
Deep neural networks, particularly face recognition models, have been shown to be vulnerable to both digital and physical adversarial examples. However, existing adversarial examples against face recognition systems either lack transferability to black-box models, or fail to be implemented in practice. In this paper, we propose a unified adversarial face generation method - Adv-Makeup, which can realize imperceptible and transferable attack under black-box setting. Adv-Makeup develops a task-driven makeup generation method with the blending module to synthesize imperceptible eye shadow over the orbital region on faces. And to achieve transferability, Adv-Makeup implements a fine-grained meta-learning adversarial attack strategy to learn more general attack features from various models. Compared to existing techniques, sufficient visualization results demonstrate that Adv-Makeup is capable to generate much more imperceptible attacks under both digital and physical scenarios. Meanwhile, extensive quantitative experiments show that Adv-Makeup can significantly improve the attack success rate under black-box setting, even attacking commercial systems.
Face anti-spoofing (FAS) plays a vital role in securing the face recognition systems from presentation attacks. Most existing FAS methods capture various cues (e.g., texture, depth and reflection) to distinguish the live faces from the spoofing faces. All these cues are based on the discrepancy among physical materials (e.g., skin, glass, paper and silicone). In this paper we rephrase face anti-spoofing as a material recognition problem and combine it with classical human material perception [1], intending to extract discriminative and robust features for FAS. To this end, we propose the Bilateral Convolutional Networks (BCN), which is able to capture intrinsic material-based patterns via aggregating multi-level bilateral macro- and micro- information. Furthermore, Multi-level Feature Refinement Module (MFRM) and multi-head supervision are utilized to learn more robust features. Comprehensive experiments are performed on six benchmark datasets, and the proposed method achieves superior performance on both intra- and cross-dataset testings. One highlight is that we achieve overall 11.3$pm$9.5% EER for cross-type testing in SiW-M dataset, which significantly outperforms previous results. We hope this work will facilitate future cooperation between FAS and material communities.
Deep neural networks are vulnerable to adversarial attacks. White-box adversarial attacks can fool neural networks with small adversarial perturbations, especially for large size images. However, keeping successful adversarial perturbations imperceptible is especially challenging for transfer-based black-box adversarial attacks. Often such adversarial examples can be easily spotted due to their unpleasantly poor visual qualities, which compromises the threat of adversarial attacks in practice. In this study, to improve the image quality of black-box adversarial examples perceptually, we propose structure-aware adversarial attacks by generating adversarial images based on psychological perceptual models. Specifically, we allow higher perturbations on perceptually insignificant regions, while assigning lower or no perturbation on visually sensitive regions. In addition to the proposed spatial-constrained adversarial perturbations, we also propose a novel structure-aware frequency adversarial attack method in the discrete cosine transform (DCT) domain. Since the proposed attacks are independent of the gradient estimation, they can be directly incorporated with existing gradient-based attacks. Experimental results show that, with the comparable attack success rate (ASR), the proposed methods can produce adversarial examples with considerably improved visual quality for free. With the comparable perceptual quality, the proposed approaches achieve higher attack success rates: particularly for the frequency structure-aware attacks, the average ASR improves more than 10% over the baseline attacks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا