Do you want to publish a course? Click here

SD-Access: Practical Experiences in Designing and Deploying Software Defined Enterprise Networks

271   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Enterprise Networks, over the years, have become more and more complex trying to keep up with new requirements that challenge traditional solutions. Just to mention one out of many possible examples, technologies such as Virtual LANs (VLANs) struggle to address the scalability and operational requirements introduced by Internet of Things (IoT) use cases. To keep up with these challenges we have identified four main requirements that are common across modern enterprise networks: (i) scalable mobility, (ii) endpoint segmentation, (iii) simplified administration, and (iv) resource optimization. To address these challenges we designed SDA (Software Defined Access), a solution for modern enterprise networks that leverages Software-Defined Networking (SDN) and other state of the art techniques. In this paper we present the design, implementation and evaluation of SDA. Specifically, SDA: (i) leverages a combination of an overlay approach with an event-driven protocol (LISP) to dynamically adapt to traffic and mobility patterns while preserving resources, and (ii) enforces dynamic endpoint groups for scalable segmentation with low operational burden. We present our experience with deploying SDA in two real-life scenarios: an enterprise campus, and a large warehouse with mobile robots. Our evaluation shows that SDA, when compared with traditional enterprise networks, can (i) reduce overall data plane forwarding state up to 70% thanks to a reactive protocol using a centralized routing server, and (ii) reduce by an order of magnitude the handover delays in scenarios of massive mobility with respect to other approaches. Finally, we discuss lessons learned while deploying and operating SDA, and possible optimizations regarding the use of an event-driven protocol and group-based segmentation.



rate research

Read More

Many of the video streaming applications in todays Internet involve the distribution of content from a CDN source to a large population of interested clients. However, widespread support of IP multicast is unavailable due to technical and economical reasons, leaving the floor to application layer multicast which introduces excessive delays for the clients and increased traffic load for the network. This paper is concerned with the introduction of an SDN-based framework that allows the network controller to not only deploy IP multicast between a source and subscribers, but also control, via a simple northbound interface, the distributed set of sources where multiple- description coded (MDC) video content is available. We observe that for medium to heavy network loads, relative to the state-of-the-art, the SDN-based streaming multicast video framework increases the PSNR of the received video significantly, from a level that is practically unwatchable to one that has good quality.
Machine-to-machine (M2M) communications have attracted great attention from both academia and industry. In this paper, with recent advances in wireless network virtualization and software-defined networking (SDN), we propose a novel framework for M2M communications in software-defined cellular networks with wireless network virtualization. In the proposed framework, according to different functions and quality of service (QoS) requirements of machine-type communication devices (MTCDs), a hypervisor enables the virtualization of the physical M2M network, which is abstracted and sliced into multiple virtual M2M networks. Moreover, we formulate a decision-theoretic approach to optimize the random access process of M2M communications. In addition, we develop a feedback and control loop to dynamically adjust the number of resource blocks (RBs) that are used in the random access phase in a virtual M2M network by the SDN controller. Extensive simulation results with different system parameters are presented to show the performance of the proposed scheme.
More and more emerging Internet of Things (IoT) applications involve status updates, where various IoT devices monitor certain physical processes and report their latest statuses to the relevant information fusion nodes. A new performance measure, termed the age of information (AoI), has recently been proposed to quantify the information freshness in time-critical IoT applications. Due to a large number of devices in future IoT networks, the decentralized channel access protocols (e.g. random access) are preferable thanks to their low network overhead. Built on the AoI concept, some recent efforts have developed several AoI-oriented ALOHA-like random access protocols for boosting the network-wide information freshness. However, all relevant works focused on theoretical designs and analysis. The development and implementation of a working prototype to evaluate and further improve these random access protocols in practice have been largely overlooked. Motivated as such, we build a software-defined radio (SDR) prototype for testing and comparing the performance of recently proposed AoI-oriented random access protocols. To this end, we implement a time-slotted wireless system by devising a simple yet effective over-the-air time synchronization scheme, in which beacons that serve as reference timing packets are broadcast by an access point from time to time. For a complete working prototype, we also design the frame structures of various packets exchanged within the system. Finally, we design a set of experiments, implement them on our prototype and test the considered algorithms in an office environment.
The flexible and programmable architectural model offered by Software-Defined Networking (SDN) has re-imagined modern networks. Supported by powerful hardware and high-speed communications between devices and the controller, SDN provides a means to virtualize control functionality and enable rapid network reconfiguration in response to dynamic application requirements. However, recent efforts to apply SDNs centralized control model to the Internet of Things (IoT) have identified significant challenges due to the constraints faced by embedded low-power devices and networks that reside at the IoT edge. In particular, reliance on external SDN controllers on the backbone network introduces a performance bottleneck (e.g., latency). To this end, we advocate a case for supporting Software-Defined IoT networks through the introduction of lightweight SDN controllers directly on the embedded hardware. We firstly explore the performance of two popular SDN implementations for IoT mesh networks, $mu$SDN and SDN-WISE, showing the former demonstrates considerable gains over the latter. We consequently employ $mu$SDN to conduct a study of embedded vs. external SDN controller performance. We highlight how the advantage of an embedded controller is reduced as the network scales, and quantify a point at which an external controller should be used for larger networks.
To improve traffic management ability, Internet Service Providers (ISPs) are gradually upgrading legacy network devices to programmable devices that support Software-Defined Networking (SDN). The coexistence of legacy and SDN devices gives rise to a hybrid SDN. Existing hybrid SDNs do not consider the potential performance issues introduced by a centralized SDN controller: flow requests processed by a highly loaded controller may experience long tail processing delay; inappropriate multi-controller deployment could increase the propagation delay of flow requests. In this paper, we propose to jointly consider the deployment of SDN switches and their controllers for hybrid SDNs. We formulate the joint problem as an optimization problem that maximizes the number of flows that can be controlled and managed by the SDN and minimizes the propagation delay of flow requests between SDN controllers and switches under a given upgrade budget constraint. We show this problem is NP-hard. To efficiently solve the problem, we propose some techniques (e.g., strengthening the constraints and adding additional valid inequalities) to accelerate the global optimization solver for solving the problem for small networks and an efficient heuristic algorithm for solving it for large networks. The simulation results from real network topologies illustrate the effectiveness of the proposed techniques and show that our proposed heuristic algorithm uses a small number of controllers to manage a high amount of flows with good performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا