Do you want to publish a course? Click here

Ultra-high energy Inverse Compton emission from Galactic electron accelerators

157   0   0.0 ( 0 )
 Added by B Reville
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is generally held that >100 TeV emission from astrophysical objects unambiguously demonstrates the presence of PeV protons or nuclei, due to the unavoidable Klein-Nishina suppression of inverse Compton emission from electrons. However, in the presence of inverse Compton dominated cooling, hard high-energy electron spectra are possible. We show that the environmental requirements for such spectra can naturally be met in spiral arms, and in particular in regions of enhanced star formation activity, the natural locations for the most promising electron accelerators: powerful young pulsars. Our scenario suggests a population of hard ultra-high energy sources is likely to be revealed in future searches, and may also provide a natural explanation for the 100 TeV sources recently reported by HAWC.



rate research

Read More

Analyses of Fermi Gamma-Ray Space Telescope data have revealed a source of excess diffuse gamma rays towards the Galactic center that extends up to roughly $pm$20 degrees in latitude. The leading theory postulates that this GeV excess is the aggregate emission from a large number of faint millisecond pulsars (MSPs). The electrons and positrons ($e^pm$) injected by this population could produce detectable inverse-Compton (IC) emissions by up-scattering ambient photons to gamma-ray energies. In this work, we calculate such IC emissions using GALPROP. A triaxial three-dimensional model of the bulge stars obtained from a fit to infrared data is used as a tracer of the putative MSP population. This model is compared against one in which the MSPs are spatially distributed as a Navarro-Frenk-White squared profile. We show that the resulting spectra for both models are indistinguishable, but that their spatial morphologies have salient recognizable features. The IC component above $sim$TeV energies carries information on the spatial morphology of the injected $e^pm$. Such differences could potentially be used by future high-energy gamma-ray detectors such as the Cherenkov Telescope Array to provide a viable multiwavelength handle for the MSP origin of the GeV excess.
A nearby super-luminous burst GRB 130427A was simultaneously detected by six $gamma$-ray space telescopes ({it Swift}, Fermi-GBM/LAT, Konus-Wind, SPI-ACS/INTEGRAL, AGILE and RHESSI) and by three RAPTOR full-sky persistent monitors. The isotropic $gamma-$ray energy release is of $sim 10^{54}$ erg, rendering it the most powerful explosion among the GRBs with a redshift $zleq 0.5$. The emission above 100 MeV lasted about one day and four photons are at energies greater than 40 GeV. We show that the count rate of 100 MeV-100 GeV emission may be mainly accounted for by the forward shock synchrotron radiation and the inverse Compton radiation likely dominates at GeV-TeV energies. In particular, an inverse Compton radiation origin is established for the $sim (95.3,~47.3,~41.4,~38.5,~32)$ GeV photons arriving at $tsim (243,~256.3,~610.6,~3409.8,~34366.2)$ s after the trigger of Fermi-GBM. Interestingly, the external-inverse-Compton-scattering of the prompt emission (the second episode, i.e., $tsim 120-260$ s) by the forward-shock-accelerated electrons is expected to produce a few $gamma-$rays at energies above 10 GeV, while five were detected in the same time interval. A possible unified model for the prompt soft $gamma-$ray, optical and GeV emission of GRB 130427A, GRB 080319B and GRB 090902B is outlined. Implication of the null detection of $>1$ TeV neutrinos from GRB 130427A by IceCube is discussed.
141 - H. R. Christiansen 2013
In this chapter we review some aspects of X-ray binaries, particularly those presenting steady jets, i.e. microquasars. Because of their proximity and similarities with active galactic nuclei (AGN), galactic jet sources are unique laboratories to test astrophysical theories of a universal scope. Due to recent observational progress made with the new generation of gamma-ray imaging atmospheric Cherenkov telescopes and in view of the upcoming km3-size neutrino detectors, we focus especially on the possible high-energy gamma radiation and neutrino emission. In connection with this, we also comment about astrophysical jets present in young stellar objects, and we briefly discuss similarities and differences with extragalactic AGN and gamma-ray bursters.
176 - Ryo Yamazaki , Abraham Loeb 2015
Shocks around clusters of galaxies accelerate electrons which upscatter the Cosmic Microwave Background photons to higher-energies. We use an analytical model to calculate this inverse Compton (IC) emission, taking into account the effects of additional energy losses via synchrotron and Coulomb scattering. We find that the surface brightness of the optical IC emission increases with redshift and halo mass. The IC emission surface brightness, 32--34~mag~arcsec$^{-2}$, for massive clusters is potentially detectable by the newly developed Dragonfly Telephoto Array.
Millisecond pulsars are very likely the main source of gamma-ray emission from globular clusters. However, the relative contributions of two separate emission processes-curvature radiation from millisecond pulsar magnetospheres vs. inverse Compton emission from relativistic pairs launched into the globular cluster environment by millisecond pulsars-has long been unclear. To address this, we search for evidence of inverse Compton emission in 8-year Fermi-LAT data from the directions of 157 Milky Way globular clusters. We find a mildly statistically significant (3.8$sigma$) correlation between the measured globular cluster gamma-ray luminosities and their photon field energy densities. However, this may also be explained by a hidden correlation between the photon field densities and the stellar encounter rates of globular clusters. Analysed in toto, we demonstrate that the gamma-ray emission of globular clusters can be resolved spectrally into two components: i) an exponentially cut-off power law and ii) a pure power law. The latter component-which we uncover at a significance of 8.2$sigma$-is most naturally interpreted as inverse Compton emission by cosmic-ray electrons and positrons injected by millisecond pulsars. We find the luminosity of this inverse Compton component is comparable to, or slightly smaller than, the luminosity of the curved component, suggesting the fraction of millisecond pulsar spin-down luminosity into relativistic leptons is similar to the fraction of the spin-down luminosity into prompt magnetospheric radiation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا