Do you want to publish a course? Click here

High energy emission from galactic jets

128   0   0.0 ( 0 )
 Added by Hugo Christiansen
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this chapter we review some aspects of X-ray binaries, particularly those presenting steady jets, i.e. microquasars. Because of their proximity and similarities with active galactic nuclei (AGN), galactic jet sources are unique laboratories to test astrophysical theories of a universal scope. Due to recent observational progress made with the new generation of gamma-ray imaging atmospheric Cherenkov telescopes and in view of the upcoming km3-size neutrino detectors, we focus especially on the possible high-energy gamma radiation and neutrino emission. In connection with this, we also comment about astrophysical jets present in young stellar objects, and we briefly discuss similarities and differences with extragalactic AGN and gamma-ray bursters.



rate research

Read More

156 - M. Breuhaus , J. Hahn , C. Romoli 2020
It is generally held that >100 TeV emission from astrophysical objects unambiguously demonstrates the presence of PeV protons or nuclei, due to the unavoidable Klein-Nishina suppression of inverse Compton emission from electrons. However, in the presence of inverse Compton dominated cooling, hard high-energy electron spectra are possible. We show that the environmental requirements for such spectra can naturally be met in spiral arms, and in particular in regions of enhanced star formation activity, the natural locations for the most promising electron accelerators: powerful young pulsars. Our scenario suggests a population of hard ultra-high energy sources is likely to be revealed in future searches, and may also provide a natural explanation for the 100 TeV sources recently reported by HAWC.
Tidal disruption events (TDE) have been considered as cosmic-ray and neutrino sources for a decade. We suggest two classes of new scenarios for high-energy multi-messenger emission from TDEs that do not have to harbor powerful jets. First, we investigate high-energy neutrino and gamma-ray production in the core region of a supermassive black hole. In particular, we show that about 1-100 TeV neutrinos and MeV gamma-rays can efficiently be produced in hot coronae around an accretion disk. We also study the consequences of particle acceleration in radiatively inefficient accretion flows (RIAFs). Second, we consider possible cosmic-ray acceleration by sub-relativistic disk-driven winds or interactions between tidal streams, and show that subsequent hadronuclear and photohadronic interactions inside the TDE debris lead to GeV-PeV neutrinos and sub-GeV cascade gamma-rays. We demonstrate that these models should be accompanied by soft gamma-rays or hard X-rays as well as optical/UV emission, which can be used for future observational tests. Although this work aims to present models of non-jetted high-energy emission, we discuss the implications of the TDE AT2019dsg that might coincide with the high-energy neutrino IceCube-191001A, by considering the corona, RIAF, hidden sub-relativistic wind, and hidden jet models. It is not yet possible to be conclusive about their physical association and the expected number of neutrinos is typically much less than unity. We find that the most optimistic cases of the corona and hidden wind models could be consistent with the observation of IceCube-191001A, whereas jet models are unlikely to explain the multi-messenger observations.
Gamma-ray bursts (GRBs) have been suggested as possible sources of the high-energy neutrino flux recently detected by the IceCube telescope. We revisit the fireball emission model and elaborate an analytical prescription to estimate the high-energy neutrino prompt emission from pion and kaon decays, assuming that the leading mechanism for the neutrino production is lepto-hadronic. To this purpose, we include hadronic, radiative and adiabatic cooling effects and discuss their relevance for long- (including high- and low-luminosity) and short-duration GRBs. The expected diffuse neutrino background is derived, by requiring that the GRB high-energy neutrino counterparts follow up-to-date gamma-ray luminosity functions and redshift evolutions of the long and short GRBs. Although dedicated stacking searches have been unsuccessful up to now, we find that GRBs could contribute up to a few % to the observed IceCube high-energy neutrino flux for sub-PeV energies, assuming that the latter has a diffuse origin. Gamma-ray bursts, especially low-luminosity ones, could however be the main sources of the IceCube high-energy neutrino flux in the PeV range. While high-luminosity and low-luminosity GRBs have comparable intensities, the contribution from the short-duration component is significantly smaller. Our findings confirm the most-recent IceCube results on the GRB searches and suggest that larger exposure is mandatory to detect high-energy neutrinos from high-luminosity GRBs in the near future.
The emission mechanisms in extragalactic jets include synchrotron and various inverse-Compton processes. At low (radio through infrared) energies, it is widely agreed that synchrotron emission dominates in both low-power (FR I) and high-power (FR II and quasar) jets, because of the power-law nature of the spectra observed and high polarizations. However, at higher energies, the emission mechanism for high-power jets at kpc scales is hotly debated. Two mechanisms have been proposed: either inverse-Compton of cosmic microwave background photons or synchrotron emission from a second, high-energy population of electrons. Here we discuss optical polarimetry as a method for diagnosing the mechanism for the high-energy emission in quasar jets, as well as revealing the jets three-dimensional energetic and magnetic field structure. We then discuss high-energy emission mechanisms for powerful jets in the light of the HST polarimetry of PKS 1136-135.
Cosmic explosions dissipate energy into their surroundings on a very wide range of time-scales: producing shock waves and associated particle acceleration. The historical culprits for the acceleration of the bulk of Galactic cosmic rays are supernova remnants: explosions on ~10000 year time-scales. Increasingly however, time-variable emission points to rapid and efficient particle acceleration in a range of different astrophysical systems. Gamma-ray bursts have the shortest time-scales, with inferred bulk Lorentz factors of ~1000 and photons emitted beyond 100 GeV, but active galaxies, pulsar wind nebulae and colliding stellar winds are all now associated with time-variable emission at ~TeV energies. Cosmic photons and neutrinos at these energies offer a powerful probe of the underlying physical mechanisms of cosmic explosions, and a tool for exploring fundamental physics with these systems. Here we discuss the motivations for high-energy observations of transients, the current experimental situation, and the prospects for the next decade, with particular reference to the major next-generation high-energy observatory CTA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا