No Arabic abstract
Analyses of Fermi Gamma-Ray Space Telescope data have revealed a source of excess diffuse gamma rays towards the Galactic center that extends up to roughly $pm$20 degrees in latitude. The leading theory postulates that this GeV excess is the aggregate emission from a large number of faint millisecond pulsars (MSPs). The electrons and positrons ($e^pm$) injected by this population could produce detectable inverse-Compton (IC) emissions by up-scattering ambient photons to gamma-ray energies. In this work, we calculate such IC emissions using GALPROP. A triaxial three-dimensional model of the bulge stars obtained from a fit to infrared data is used as a tracer of the putative MSP population. This model is compared against one in which the MSPs are spatially distributed as a Navarro-Frenk-White squared profile. We show that the resulting spectra for both models are indistinguishable, but that their spatial morphologies have salient recognizable features. The IC component above $sim$TeV energies carries information on the spatial morphology of the injected $e^pm$. Such differences could potentially be used by future high-energy gamma-ray detectors such as the Cherenkov Telescope Array to provide a viable multiwavelength handle for the MSP origin of the GeV excess.
The Galactic Center Excess (GCE) is an extended gamma-ray source in the central region of the Galaxy found in Fermi Large Area Telescope (Fermi-LAT) data. One of the leading explanations for the GCE is an unresolved population of millisecond pulsars (MSPs) in the Galactic bulge. Due to differing star formation histories it is expected that the MSPs in the Galactic bulge are older and therefore dimmer than those in the Galactic disk. Additionally, correlations between the spectral parameters of the MSPs and the spin-down rate of the corresponding neutron stars have been observed. This implies that the bulge MSPs may be spectrally different from the disk MSPs. We perform detailed modelling of the MSPs from formation until observation. Although we confirm the correlations, we do not find they are sufficiently large to significantly differentiate the spectra of the bulge MSPs and disk MSPs when the uncertainties are accounted for. Our results demonstrate that the population of MSPs that can explain the gamma-ray signal from the resolved MSPs in the Galactic disk and the unresolved MSPs in the boxy bulge and nuclear bulge can consistently be described as arising from a common evolutionary trajectory for some subset of astrophysical sources common to all these different environments. We do not require that there is anything unusual about inner Galaxy MSPs to explain the GCE. Additionally, we use a more accurate geometry for the distribution of bulge MSPs and incorporate dispersion measure estimates of the MSPs distances. We find that the elongated boxy bulge morphology means that some the bulge MSPs are closer to us and so easier to resolve. We identify three resolved MSPs that have significant probabilities of belonging to the bulge population.
Millisecond pulsars are very likely the main source of gamma-ray emission from globular clusters. However, the relative contributions of two separate emission processes-curvature radiation from millisecond pulsar magnetospheres vs. inverse Compton emission from relativistic pairs launched into the globular cluster environment by millisecond pulsars-has long been unclear. To address this, we search for evidence of inverse Compton emission in 8-year Fermi-LAT data from the directions of 157 Milky Way globular clusters. We find a mildly statistically significant (3.8$sigma$) correlation between the measured globular cluster gamma-ray luminosities and their photon field energy densities. However, this may also be explained by a hidden correlation between the photon field densities and the stellar encounter rates of globular clusters. Analysed in toto, we demonstrate that the gamma-ray emission of globular clusters can be resolved spectrally into two components: i) an exponentially cut-off power law and ii) a pure power law. The latter component-which we uncover at a significance of 8.2$sigma$-is most naturally interpreted as inverse Compton emission by cosmic-ray electrons and positrons injected by millisecond pulsars. We find the luminosity of this inverse Compton component is comparable to, or slightly smaller than, the luminosity of the curved component, suggesting the fraction of millisecond pulsar spin-down luminosity into relativistic leptons is similar to the fraction of the spin-down luminosity into prompt magnetospheric radiation.
It is generally held that >100 TeV emission from astrophysical objects unambiguously demonstrates the presence of PeV protons or nuclei, due to the unavoidable Klein-Nishina suppression of inverse Compton emission from electrons. However, in the presence of inverse Compton dominated cooling, hard high-energy electron spectra are possible. We show that the environmental requirements for such spectra can naturally be met in spiral arms, and in particular in regions of enhanced star formation activity, the natural locations for the most promising electron accelerators: powerful young pulsars. Our scenario suggests a population of hard ultra-high energy sources is likely to be revealed in future searches, and may also provide a natural explanation for the 100 TeV sources recently reported by HAWC.
If the mysterious Fermi-LAT GeV gamma-ray excess is due to an unresolved population of millisecond pulsars (MSP) in the Galactic bulge, one expects this very same population to shine in X rays. For the first time, we address the question of what is the sensitivity of current X-ray telescopes to an MSP population in the Galactic bulge. To this end, we create a synthetic population of Galactic MSPs, building on an empirical connection between gamma- and X-ray MSP emission based on observed source properties. We compare our model with compact sources in the latest Chandra source catalog, applying selections based on spectral observables and optical astrometry with Gaia. We find a significant number of Chandra sources in the region of interest to be consistent with being bulge MSPs that are as yet unidentified. This motivates dedicated multi-wavelength searches for bulge MSPs: Some promising directions are briefly discussed.
Using data from the HAWC gamma-ray Telescope, we have studied a sample of 37 millisecond pulsars (MSPs), selected for their spindown power and proximity. From among these MSP, we have identified four which favor the presence of very high-energy gamma-ray emission at a level of $(2Delta ln mathcal{L})^{1/2} ge 2.5$. Adopting a correlation between the spindown power and gamma-ray luminosity of each pulsar, we performed a stacked likelihood analysis of these 37 MSPs, finding that the data supports the conclusion that these sources emit very high-energy gamma-rays at a level of $(2Delta ln mathcal{L})^{1/2} = 4.24$. Among sets of randomly selected sky locations within HAWCs field-of-view, less than 1% of such realizations yielded such high statistical significance. Our analysis suggests that MSPs produce very high-energy gamma-ray emission with a similar efficiency to that observed from the Geminga TeV-halo, $eta_{rm MSP} = (0.39-1.08) times eta_{rm Geminga}$. This conclusion poses a significant challenge for pulsar interpretations of the Galactic Center gamma-ray excess, as it suggests that any population of MSPs potentially capable of producing the GeV excess would also produce TeV-scale emission in excess of that observed by HESS from this region. Future observations by CTA will be able to substantially clarify this situation.