Do you want to publish a course? Click here

Three-state opinion dynamics in modular networks

78   0   0.0 ( 0 )
 Added by Nuno Crokidakis
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we study the opinion evolution in a community-based population with intergroup interactions. We address two issues. First, we consider that such intergroup interactions can be negative with some probability $p$. We develop a coupled mean-field approximation that still preserves the community structure and it is able to capture the richness of the results arising from our Monte Carlo simulations: continuous and discontinuous order-disorder transitions as well as nonmonotonic ordering for an intermediate community strength. In the second part, we consider only positive interactions, but with the presence of inflexible agents holding a minority opinion. We also consider an indecision noise: a probability $q$ that allows the spontaneous change of opinions to the neutral state. Our results show that the modular structure leads to a nonmonotonic global ordering as $q$ increases. This inclination toward neutrality plays a dual role: a moderated propensity to neutrality helps the initial minority to become a majority, but this noise-driven opinion switching becomes less pronounced if the agents are too susceptible to become neutral.



rate research

Read More

In this work we tackle a kinetic-like model of opinions dynamics in a networked population endued with a quenched plurality and polarization. Additionally, we consider pairwise interactions that are restrictive, which is modeled with a smooth bounded confidence. Our results show the interesting emergence of nonequilibrium hysteresis and heterogeneity-assisted ordering. Such counterintuitive phenomena are robust to different types of network architectures such as random, small-world and scale-free.
We study the joint evolution of worldviews by proposing a model of opinion dynamics, which is inspired in notions from evolutionary ecology. Agents update their opinion on a specific issue based on their propensity to change -- asserted by the social neighbours -- weighted by their mutual similarity on other issues. Agents are, therefore, more influenced by neighbours with similar worldviews (set of opinions on various issues), resulting in a complex co-evolution of each opinion. Simulations show that the worldview evolution exhibits events of intermittent polarization when the social network is scale-free. This, in turn, trigger extreme crashes and surges in the popularity of various opinions. Using the proposed model, we highlight the role of network structure, bounded rationality of agents, and the role of key influential agents in causing polarization and intermittent reformation of worldviews on scale-free networks.
In this paper, we propose a Boltzmann-type kinetic description of opinion formation on social networks, which takes into account a general connectivity distribution of the individuals. We consider opinion exchange processes inspired by the Sznajd model and related simplifications but we do not assume that individuals interact on a regular lattice. Instead, we describe the structure of the social network statistically, assuming that the number of contacts of a given individual determines the probability that their opinion reaches and influences the opinion of another individual. From the kinetic description of the system, we study the evolution of the mean opinion, whence we find precise analytical conditions under which phase transitions, i.e. changes of sign between the initial and the asymptotic mean opinions, occur. Furthermore, we show that a non-zero correlation between the initial opinions and the connectivity of the individuals is necessary to observe phase transitions. Finally, we validate our analytical results through Monte Carlo simulations of the stochastic opinion exchange processes on the social network.
In this work we study a model of opinion dynamics considering activation/deactivation of agents. In other words, individuals are not static and can become inactive and drop out from the discussion. A probability $w$ governs the deactivation dynamics, whereas social interactions are ruled by kinetic exchanges, considering competitive positive/negative interactions. Inactive agents can become active due to interactions with active agents. Our analytical and numerical results show the existence of two distinct nonequilibrium phase transitions, with the occurrence of three phases, namely ordered (ferromagnetic-like), disordered (paramagnetic-like) and absorbing phases. The absorbing phase represents a collective state where all agents are inactive, i.e., they do not participate on the dynamics, inducing a frozen state. We determine the critical value $w_c$ above which the system is in the absorbing phase independently of the other parameters. We also verify a distinct critical behavior for the transitions among different phases.
In Hopfield neural networks with up to 10^8 nodes we store two patterns through Hebb couplings. Then we start with a third random pattern which is supposed to evolve into one of the two stored patterns, simulating the cognitive process of associative memory leading to one of two possible opinions. With probability p each neuron independently, instead of following the Hopfield rule, takes over the corresponding value of another network, thus simulating how different people can convince each other. A consensus is achieved for high p.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا