Do you want to publish a course? Click here

Proposal for noise-free visible-telecom quantum frequency conversion through third-order sum and difference frequency generation

94   0   0.0 ( 0 )
 Added by Xiyuan Lu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum frequency conversion (QFC) between the visible and telecom is a key functionality to connect quantum memories over long distances in fiber-based quantum networks. Current QFC methods for linking such widely-separated frequencies, such as sum/difference frequency generation and four-wave mixing Bragg scattering, are prone to broadband noise from the pump laser(s). To address this issue, we propose to use third-order sum/difference frequency generation (TSFG/TDFG) for an upconversion/downconversion QFC interface. In this process, two pump photons combine their energy and momentum to mediate frequency conversion across visible and telecom bands, bridging a large spectral gap with long-wavelength pump pho-tons, which is particularly beneficial from the noise perspective. We show that waveguide-coupled silicon nitride microring resonators can be designed for efficient QFC between 606 nm and 1550 nm via a 1990 nm pump through TSFG/TDFG. We simulate the device dispersion and coupling, and from the simulated parameters estimate that the frequency conversion can be efficient (>80 %) at 50 mW pump power. Our results suggest that microresonator-based TSFG/TDFG is promising for compact, scalable, and low power QFC across large spectral gaps.



rate research

Read More

Quantum frequency conversion (QFC), a nonlinear optical process in which the frequency of a quantum light field is altered while conserving its non-classical correlations, was first demonstrated 20 years ago. Meanwhile, it is considered an essential tool for the implementation of quantum repeaters since it allows for interfacing quantum memories with telecom-wavelength photons as quantum information carriers. Here we demonstrate efficient (>30%) QFC of visible single photons (711 nm) emitted by a quantum dot (QD) to a telecom wavelength (1,313 nm). Analysis of the first and second-order coherence before and after wavelength conversion clearly proves that important properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with QFC as a promising technique for quantum repeater schemes.
A broadband visible blue-to-red, 10 GHz repetition rate frequency comb is generated by combined spectral broadening and triple-sum frequency generation in an on-chip silicon nitride waveguide. Ultra-short pulses of 150 pJ pulse energy, generated via electro-optic modulation of a 1560 nm continuous-wave laser, are coupled to a silicon nitride waveguide giving rise to a broadband near-infrared supercontinuum. Modal phase matching inside the waveguide allows direct triple-sum frequency transfer of the near-infrared supercontinuum into the visible wavelength range covering more than 250 THz from below 400 nm to above 600 nm wavelength. This scheme directly links the mature optical telecommunication band technology to the visible wavelength band and can find application in astronomical spectrograph calibration as well as referencing of continuous-wave lasers.
Using numerical simulations of an extended Lugiato-Lefever equation, we analyze the stability and nonlinear dynamics of Kerr frequency combs generated in microresonators and fiber resonators taking into account third-order dispersion effects. We show that cavity solitons underlying Kerr frequency combs, normally sensitive to oscillatory and chaotic instabilities, are stabilized in a wide range of parameter space by third-order dispersion. Moreover, we demonstrate how the snaking structure organizing compound states of multiple cavity solitons is qualitatively changed by third-order dispersion, promoting an increased stability of Kerr combs underlined by a single cavity soliton.
High-density communication through optical fiber is made possible by Wavelength Division Multiplexing, which is the simultaneous transmission of many discrete signals at different optical frequencies. Vast quantities of data may be transmitted without interference using this scheme but flexible routing of these signals requires an electronic middle step, carrying a cost in latency. We present a technique for frequency conversion across the entire WDM spectrum with a single device, which removes this latency cost. Using an optical waveguide in lithium niobate and two infrared pump beams, we show how to maximize conversion efficiency between arbitrary frequencies by analyzing the role of dispersion in cascaded nonlinear processes. The technique is presented generally and may be applied to any suitable nonlinear material or platform, and to classical or quantum optical signals.
We present a comprehensive study of second-order nonlinear difference frequency generation in triply resonant cavities using a theoretical framework based on coupled-mode theory. We show that optimal quantum-limited conversion efficiency can be achieved at any pump power when the powers at the pump and idler frequencies satisfy a critical relationship. We demonstrate the existence of a broad parameter range in which all triply-resonant DFG processes exhibit monostable conversion. We also demonstrate the existence of a geometry-dependent bistable region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا