Do you want to publish a course? Click here

Difference-frequency generation with quantum-limited efficiency in triply-resonant nonlinear cavities

109   0   0.0 ( 0 )
 Added by Ian Burgess
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a comprehensive study of second-order nonlinear difference frequency generation in triply resonant cavities using a theoretical framework based on coupled-mode theory. We show that optimal quantum-limited conversion efficiency can be achieved at any pump power when the powers at the pump and idler frequencies satisfy a critical relationship. We demonstrate the existence of a broad parameter range in which all triply-resonant DFG processes exhibit monostable conversion. We also demonstrate the existence of a geometry-dependent bistable region.



rate research

Read More

Achieving efficient terahertz (THz) generation using compact turn-key sources operating at room temperature and modest power levels represents one of the critical challeges that must be overcome to realize truly practical applications based on THz. Up to now, the most efficient approaches to THz generation at room temperature -- relying mainly on optical rectification schemes -- require intricate phase-matching set-ups and powerful lasers. Here we show how the unique light-confining properties of triply-resonant photonic resonators can be tailored to enable dramatic enhancements of the conversion efficiency of THz generation via nonlinear frequency down-conversion processes. We predict that this approach can be used to reduce up to three orders of magnitude the pump powers required to reach quantum-limited conversion efficiency of THz generation in nonlinear optical material systems. Furthermore, we propose a realistic design readily accesible experimentally, both for fabrication and demonstration of optimal THz conversion efficiency at sub-W power levels.
We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-polarization near-infrared (e.g. telecom band) photonic-crystal nanobeam cavity, allowing the mixing of three mutually orthogonal fundamental cavity modes through a chi(2) nonlinearity. We demonstrate through coupled-mode theory that complete depletion of the pump frequency - i.e., quantum-limited conversion - is possible in an experimentally feasible geometry, with the operating output power at the point of optimal total conversion efficiency adjustable by varying the mode quality (Q) factors.
A convenient for practical use new theoretical approach describing a nonlinear frequency response of the multi-resonant nonlinear ring cavities (RC) to an intense monochromatic wave action is developed. The approach closely relates the many-valuednesses of the RC frequency response and the dispersion relation of a waveguide, from which the cavity is produced. Arising of the multistability regime in the nonlinear RC is treated. The threshold and the dynamic range of the bistability and tristability regimes for an optical ring cavity with the Kerr nonlinearity are derived and discussed.
Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously-pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on $chi^{(2)}$ frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although at a very early stage, our work lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.
We theoretically study the generation of optical frequency combs and corresponding pulse trains in doubly resonant intracavity second-harmonic generation (SHG). We find that, despite the large temporal walk-off characteristic of realistic cavity systems, the nonlinear dynamics can be accurately and efficiently modelled using a pair of coupled mean-field equations. Through rigorous stability analysis of the systems steady-state continuous wave solutions, we demonstrate that walk-off can give rise to a new, previously unexplored regime of temporal modulation instability (MI). Numerical simulations performed in this regime reveal rich dynamical behaviours, including the emergence of temporal patterns that correspond to coherent optical frequency combs. We also demonstrate that the two coupled equations that govern the doubly resonant cavity behaviour can, under typical conditions, be reduced to a single mean-field equation akin to that describing the dynamics of singly resonant cavity SHG [F. Leo et al., Phys. Rev. Lett. 116, 033901 (2016)]. This reduced approach allows us to derive a simple expression for the MI gain, thus permitting to acquire significant insight into the underlying physics. We anticipate that our work will have wide impact on the study of frequency combs in emerging doubly resonant cavity SHG platforms, including quadratically nonlinear microresonators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا