Do you want to publish a course? Click here

Visible-to-telecom quantum frequency conversion of light from a single quantum emitter

243   0   0.0 ( 0 )
 Added by Sebastian Zaske
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum frequency conversion (QFC), a nonlinear optical process in which the frequency of a quantum light field is altered while conserving its non-classical correlations, was first demonstrated 20 years ago. Meanwhile, it is considered an essential tool for the implementation of quantum repeaters since it allows for interfacing quantum memories with telecom-wavelength photons as quantum information carriers. Here we demonstrate efficient (>30%) QFC of visible single photons (711 nm) emitted by a quantum dot (QD) to a telecom wavelength (1,313 nm). Analysis of the first and second-order coherence before and after wavelength conversion clearly proves that important properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with QFC as a promising technique for quantum repeater schemes.



rate research

Read More

On-demand indistinguishable single photon sources are essential for quantum networking and communication. Semiconductor quantum dots are among the most promising candidates, but their typical emission wavelength renders them unsuitable for use in fibre networks. Here, we present quantum frequency conversion of near-infrared photons from a bright quantum dot to the telecommunication C-band, allowing integration with existing fibre architectures. We use a custom-built, tunable 2400 nm seed laser to convert single photons from 942 nm to 1550 nm in a difference frequency generation process. We achieve an end-to-end conversion efficiency of $sim$35%, demonstrate count rates approaching 1 MHz at 1550 nm with $g^{left(2right)}left(0right) = 0.04$, and achieve Hong-Ou-Mandel visibilities of 60%. We expect this scheme to be preferable to quantum dot sources directly emitting at telecom wavelengths for fibre based quantum networking.
We investigate the reduction of the electromagnetic field fluctuations in resonance fluorescence from a single emitter coupled to an optical nanostructure. We find that such hybrid system can lead to the creation of squeezed states of light, with quantum fluctuations significantly below the shot noise level. Moreover, the physical conditions for achieving squeezing are strongly relaxed with respect to an emitter in free space. A high degree of control over squeezed light is feasible both in the far and near fields, opening the pathway to its manipulation and applications on the nanoscale with state-of-the-art setups.
136 - Yu Ding , Z. Y. Ou 2010
By using parametric down-conversion process with a strong signal field injection, we demonstrate coherent frequency down-conversion from a pump photon to an idler photon. Contrary to a common misunderstanding, we show that the process can be free of quantum noise. With an interference experiment, we demonstrate that the coherence is preserved in the conversion process. This may lead to a high fidelity quantum state transfer from high frequency photon to low frequency photon and connects a missing link in a quantum network. With this scheme of coherent frequency down-conversion of photons, we propose a method of single-photon wavelength division multiplexing.
Fiber optic communication is the backbone of our modern information society, offering high bandwidth, low loss, weight, size and cost, as well as an immunity to electromagnetic interference. Microwave photonics lends these advantages to electronic sensing and communication systems, but - unlike the field of nonlinear optics - electro-optic devices so far require classical modulation fields whose variance is dominated by electronic or thermal noise rather than quantum fluctuations. Here we present a cavity electro-optic transceiver operating in a millikelvin environment with a mode occupancy as low as 0.025 $pm$ 0.005 noise photons. Our system is based on a lithium niobate whispering gallery mode resonator, resonantly coupled to a superconducting microwave cavity via the Pockels effect. For the highest continuous wave pump power of 1.48 mW we demonstrate bidirectional single-sideband conversion of X band microwave to C band telecom light with a total (internal) efficiency of 0.03 % (0.7 %) and an added output conversion noise of 5.5 photons. The high bandwidth of 10.7 MHz combined with the observed very slow heating rate of 1.1 noise photons s$^{-1}$ puts quantum limited pulsed microwave-optics conversion within reach. The presented device is versatile and compatible with superconducting qubits, which might open the way for fast and deterministic entanglement distribution between microwave and optical fields, for optically mediated remote entanglement of superconducting qubits, and for new multiplexed cryogenic circuit control and readout strategies.
We measure the dynamics of a non-classical optical field using two-time second-order correlations in conjunction with pulsed excitation. The technique quantifies single-photon purity and coherence during the excitation-decay cycle of an emitter, illustrated here using a quantum dot. We observe that for certain pump wavelengths, photons detected early in the cycle have reduced single-photon purity and coherence compared to those detected later. A model indicates that the single-photon purity dynamics are due to exciton recapture after initial emission and within the same pulse cycle.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا