Do you want to publish a course? Click here

A study of the stellar photosphere-hydrogen ionisation front interaction in pulsating variables using period-color relations

56   0   0.0 ( 0 )
 Added by Susmita Das
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Period-color (PC) relations may be used to study the interaction of the stellar photosphere and the hydrogen ionization front (HIF). RR Lyraes (RRLs) and long period classical Cepheids (P > 10d) have been found to exhibit different PC behavior at minimum and maximum light which can be explained by the HIF-photosphere interaction based on their location on the HR diagram. In this work, we extend the study to include type II Cepheids (T2Cs) with an aim to test the HIF-photosphere interaction theory across a broad spectrum of variable star types. We find W Vir stars and BL Her stars to have similar PC relations as those from long period and short period classical Cepheids, respectively. We also use MESA to compute RRL, BL Her and classical Cepheid models to study the theoretical HIF-photosphere distance and find the results to be fairly consistent with the HIF-photosphere interaction theory.



rate research

Read More

80 - S. Kanbur 2007
Recent evidence has emerged that the Cepheid PL relation in the LMC is nonlinear in the sense that the existing data are more consistent with two lines of differing slope with a break at a period of 10 days. We review the statistical evidence for this, the implications for the extra-galactic distance scale and CMB independent estimations of Hubbles constant and briefly outline one possible physical mechanism which could cause this nonlinearity.
Period-colour and amplitude-colour (PCAC) relations can be used to probe both the hydrodynamics of outer envelope structure and evolutionary status of Cepheids and RR Lyraes. In this work, we incorporate the PCAC relations for RR Lyraes, BL Her, W Vir and classical Cepheids in a single unifying theory that involves the interaction of the hydrogen ionization front (HIF) and stellar photosphere and the theory of stellar evolution. PC relations for RR Lyraes and classical Cepheids using OGLE-IV data are found to be consistent with this theory: RR Lyraes have shallow/sloped relations at minimum/maximum light whilst long-period ($P>10$ days) Cepheids exhibit sloped/flat PC relations at minimum/maximum light. The differences in the PC relations for Cepheids and RR Lyraes can be explained based on the relative location of the HIF and stellar photosphere which changes depending on their position on the HR diagram. We also extend our analysis of PCAC relations for type II Cepheids in the Galactic bulge, LMC and SMC using OGLE-IV data. We find that BL Her stars have sloped PC relations at maximum and minimum light similar to short-period ($P<10$ days) classical Cepheids. W Vir stars exhibit sloped/flat PC relation at minimum/maximum light similar to long-period classical Cepheids. We also compute state-of-the-art 1D radiation hydrodynamic models of RR Lyraes, BL Her and classical Cepheids using the radial stellar pulsation code in MESA to further test these ideas theoretically and find that the models are generally consistent with this picture. We are thus able to explain PC relations at maximum and minimum light across a broad spectrum of variable star types.
207 - C. Ngeow 2008
The Cepheid period-luminosity (P-L) relation is regarded as a linear relation (in log[P]) for a wide period range from ~2 to ~100 days. However, several recent controversial works have suggested that the P-L relation derived from the Large Magellanic Cloud (LMC) Cepheids exhibits a non-linear feature with a break period around 10 days. Here we review the evidence for linear/non-linear P-L relations from optical to near infrared bands. We offer a possible theoretical explanation to account for the nonlinear P-L relation from the idea of stellar photosphere - hydrogen ionization front interaction.
We present Period-Luminosity and Period-Luminosity-Color relations at maximum-light for Mira variables in the Magellanic Clouds using time-series data from the Optical Gravitational Lensing Experiment (OGLE-III) and {it Gaia} data release 2. The maximum-light relations exhibit a scatter typically up to $sim 30%$ smaller than their mean-light counterparts. The apparent magnitudes of Oxygen-rich Miras at maximum-light display significantly smaller cycle-to-cycle variations than at minimum-light. High-precision photometric data for Kepler Mira candidates also exhibit stable magnitude variations at the brightest epochs while their multi-epoch spectra display strong Balmer emission lines and weak molecular absorption at maximum-light. The stability of maximum-light magnitudes for Miras possibly occurs due to the decrease in the sensitivity to molecular bands at their warmest phase. At near-infrared wavelengths, the Period-Luminosity relations of Miras display similar dispersion at mean and maximum-light with limited time-series data in the Magellanic Clouds. A kink in the Oxygen-rich Mira Period-Luminosity relations is found at 300 days in the $VI$-bands which shifts to longer-periods ($sim 350$~days) at near-infrared wavelengths. Oxygen-rich Mira Period-Luminosity relations at maximum-light provide a relative distance modulus, $Delta mu = 0.48pm0.08$~mag, between the Magellanic Clouds with a smaller statistical uncertainty than the mean-light relations. The maximum-light properties of Miras can be very useful for stellar atmosphere modeling and distance scale studies provided their stability and the universality can be established in other stellar environments in the era of extremely large telescopes.
Our goal is to assess Gaias performance on the period recovery of short period (p < 2 hours) and small amplitude variability. To reach this goal first we collected the properties of variable stars that fit the requirements described above. Then we built a database of synthetic light-curves with short period and low amplitude variability with time sampling that follows the Gaia nominal scanning law and with noise level corresponding to the expected photometric precision of Gaia. Finally we performed period search on the synthetic light-curves to obtain period recovery statistics. This work extends our previous period recovery studies to short period variable stars which have non-stationary Fourier spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا