Our goal is to assess Gaias performance on the period recovery of short period (p < 2 hours) and small amplitude variability. To reach this goal first we collected the properties of variable stars that fit the requirements described above. Then we built a database of synthetic light-curves with short period and low amplitude variability with time sampling that follows the Gaia nominal scanning law and with noise level corresponding to the expected photometric precision of Gaia. Finally we performed period search on the synthetic light-curves to obtain period recovery statistics. This work extends our previous period recovery studies to short period variable stars which have non-stationary Fourier spectra.
We present a catalog of 417 luminous infrared variable stars with periods exceeding 250 days. These were identified in 20 nearby galaxies by the ongoing SPIRITS survey with the Spitzer Space Telescope. Of these, 359 variables have $M_{[4.5]}$ (phase-weighted mean magnitudes) fainter than $-12$ and periods and luminosities consistent with previously reported variables in the Large Magellanic Cloud. However, 58 variables are more luminous than $M_{[4.5]} = -12$, including 11 that are brighter than $M_{[4.5]} = -13$ with the brightest having $M_{[4.5]} = -15.51$. Most of these bright variable sources have quasi-periods longer than 1000 days, including four over 2000 days. We suggest that the fundamental period-luminosity relationship, previously measured for the Large Magellanic Cloud, extends to much higher luminosities and longer periods in this large galaxy sample. We posit that these variables include massive AGB stars (possibly super-AGB stars), red supergiants experiencing exceptionally high mass-loss rates, and interacting binaries. We also present 3.6, 4.5, 5.8 and 8.0 $mu$m photometric catalogs for all sources in these 20 galaxies.
According to most literature sources, the amplitude of the pulsational variability observed in gamma Doradus stars does not exceed 0.1 mag in Johnson V. We have analyzed fifteen high-amplitude gamma Doradus stars with photometric peak-to-peak amplitudes well beyond this limit, with the aim of unraveling the mechanisms behind the observed high amplitudes and investigating whether these objects are in any way physically distinct from their low-amplitude counterparts. We have calculated astrophysical parameters and investigated the location of the high-amplitude gamma Doradus stars and a control sample of fifteen low-amplitude objects in the log Teff versus log L diagram. Employing survey data and our own observations, we analyzed the photometric variability of our target stars using discrete Fourier transform. Correlations between the observed primary frequencies, amplitudes and other parameters like effective temperature and luminosity were investigated. The unusually high amplitudes of the high-amplitude gamma Doradus stars can be explained by the superposition of several base frequencies in interaction with their combination and overtone frequencies. Although the maximum amplitude of the primary frequencies does not exceed an amplitude of 0.1 mag, total light variability amplitudes of over 0.3 mag (V) can be attained in this way. Low- and high-amplitude gamma Doradus stars do not appear to be physically distinct in any other respect than their total variability amplitudes but merely represent two ends of the same, uniform group of variables.
High precision Kepler photometry is used to explore the details of AGB light curves. Since AGB variability has a typical time scale on order of a year we discuss at length the removal of long term trends and quarterly changes in Kepler data. Photometry for a small sample of nine SR AGB stars are examined using a 30 minute cadence over a period of 45 months. While undergoing long period variations of many magnitudes, the light curves are shown to be smooth at the millimagnitude level over much shorter time intervals. No flares or other rapid events were detected on the sub-day time scale. The shortest AGB period detected is on the order of 100 days. All the SR variables in our sample are shown to have multiple modes. This is always the first overtone typically combined with the fundamental. A second common characteristic of SR variables is shown to be the simultaneous excitation of multiple closely separated periods for the same overtone mode. Approximately half the sample had a much longer variation in the light curve, likely a long secondary period. The light curves were all well represented by a combination of sinusoids. However, the properties of the sinusoids are time variable with irregular variations present at low level. No non-radial pulsations were detected. It is argued that the long secondary period variation seen in many SR variables is intrinsic to the star and linked to multiple mode pulsation.
The mass-loss rate of donor stars in cataclysmic variables (CVs) is of paramount importance in the evolution of short-period CVs. Observed donors are oversized in comparison with those of isolated single stars of the same mass, which is thought to be a consequence of the mass loss. Using the empirical mass-radius relation of CVs and the homologous approximation for changes in effective temperature T_2, orbital period P, and luminosity of the donor with the stellar radius, we find the semi-empirical mass-loss rate M2_dot of CVs as a function of P. The derived M2_dot is at ~10^(-9.5)-10^(-10) Msun/yr and depends weakly on P when P > 90 min, while it declines very rapidly towards the minimum period when P < 90 min, emulating the P-T_2 relation. Due to strong deviation from thermal equilibrium caused by the mass loss, the semi-empirical M2_dot is significantly different from, and has a less-pronounced turnaround behavior with P than suggested by previous numerical models. The semi-empirical P-M2_dot relation is consistent with the angular momentum loss due to gravitational wave emission, and strongly suggests that CV secondaries with 0.075 Msun < M_2 < 0.2 Msun are less than 2 Gyrs old. When applied to selected eclipsing CVs, our semi-empirical mass-loss rates are in good agreement with the accretion rates derived from the effective temperatures T_1 of white dwarfs, suggesting that M2_dot can be used to reliably infer T_2 from T_1. Based on the semi-empirical M2_dot, SDSS 1501 and 1433 systems that were previously identified as post-bounce CVs have yet to reach the minimal period.
We present an automated classification of stars exhibiting periodic, non-periodic and irregular light variations. The Hipparcos catalogue of unsolved variables is employed to complement the training set of periodic variables of Dubath et al. with irregular and non-periodic representatives, leading to 3881 sources in total which describe 24 variability types. The attributes employed to characterize light-curve features are selected according to their relevance for classification. Classifier models are produced with random forests and a multistage methodology based on Bayesian networks, achieving overall misclassification rates under 12 per cent. Both classifiers are applied to predict variability types for 6051 Hipparcos variables associated with uncertain or missing types in the literature.