No Arabic abstract
To indirectly evaluate the asymmetry of the radiation drive under limited measurement conditions in inertial confinement fusion research, we have proposed an integral method to approximate the three-dimensional self-radiation distribution of the compressed plasma core using only four pinhole images from a single laser entrance hole at a maximum projection angle of 10{deg}. The simultaneous algebraic reconstruction technique (SART) that uses spatial constraints provided by the prior structural information and the central pinhole image is utilized in the simulation. The simulation results showed that the normalized mean square deviation between the original distribution and reconstruction results of the central radiation area of the simulated cavity was 0.4401, and the structural similarity of the cavity radiation distribution was 0.5566. Meanwhile, using more diagnostic holes could achieve better structural similarity and lower reconstruction error. In addition, the results indicated that our new proposed method could reconstruct the distribution of a compressed plasma core in a vacuum hohlraum with high accuracy.
The first integrated implosion experiment of three-axis cylindrical hohlraum (TACH) was accomplished at the SGIII laser facility. 24 laser beams of the SGIII laser facility were carefully chosen and quasi-symmetrically injected into the TACH, in which a highly symmetric radiation filed was generated with a peak radiation temperature of ~190eV. Driven by the radiation field, the neutron yield of a deuterium gas filled capsule reached ~1e9, and the corresponding yield over clean (YOC) was ~40% for a convergence ratio (Cr) of ~17. The X-ray self-emission image of imploded capsule cores was nearly round, and the backscatter fraction of laser beams was less than 1.25%. This experiment preliminarily demonstrated the major performance of TACH, such as the robustness of symmetry, and a laser plasma instability (LPI) behavior similar to that of the outer ring of traditional cylindrical hohlraum.
Electronic transport is at the heart of many phenomena in condensed matter physics and material science. Magnetic imaging is a non-invasive tool for detecting electric current in materials and devices. A two-dimensional current density can be reconstructed from an image of a single component of the magnetic field produced by the current. In this work, we approach the reconstruction problem in the framework of Bayesian inference, i.e. we solve for the most likely current density given an image obtained by a magnetic probe. To enforce a sensible current density priors are used to associate a cost with unphysical features such as pixel-to-pixel oscillations or current outside the device boundary. Beyond previous work, our approach does not require analytically tractable priors and therefore creates flexibility to use priors that have not been explored in the context of current reconstruction. Here, we implement several such priors that have desirable properties. A challenging aspect of imposing a prior is choosing the optimal strength. We describe an empirical way to determine the appropriate strength of the prior. We test our approach on numerically generated examples. Our code is released in an open-source texttt{python} package called texttt{pysquid}.
To precisely measure and evaluate X-ray generation and evolution in a hohlraum during an implosion process, we present a two-dimensional (2D) time- and space-resolved diagnostic method by combining a compressed ultrafast photography (CUP) system and a simplified version of space-resolving flux detector (SSRFD). Numerical experiment results showed that the reconstruction quality of the conventional CUP significantly improved owing to the addition of the external SSRFD, especially when a coded mask with a large pixel size was used in the CUP. Further, the performance of the CUP cooperation with the SSRFD was better than that of adding an external charge-coupled device or streak camera. Compared with existing ultrafast imaging techniques in laser fusion, the proposed method has a prominent advantage of measuring the 2D evolution of implosion by combining high temporal resolution of streak camera and high spatial resolution of SSRFD; moreover, it can provide guidance for designing diagnostic experiments in laser fusion research.
The purpose of the present work is the study of reconstruction properties of a new Molecular Breast Imaging (MBI) device for the early diagnosis of breast cancer, in Limited Angle Tomography (LAT), by using two asymmetric detector heads with different collimators. The detectors face each other in anti-parallel viewing direction and, mild-compressing the breast phantom, they are able to reconstruct the inner tumour of the phantoms with only a limited number of projections using a dedicated maximum-likelihood expectation maximization (ML-EM) algorithm. Phantoms, MBI system, as well as Monte Carlo simulator using Geant 4 Application for Tomographic Emission (GATE) software, are briefly described. MBI systems model has been implemented in IDL (Interactive Data Visualization), in order to evaluate the best LAT configuration of the system and its reconstruction ability by varying tumours size, depth and uptake. LAT setup in real and simulated configurations, as well as the ML-EM method and the preliminary reconstruction results, are discussed.
Coulomb implosion mechanism of the negatively charged ion acceleration in laser plasmas is proposed. When a cluster target is irradiated by an intense laser pulse and the Coulomb explosion of positively charged ions occurs, the negative ions are accelerated inward. The maximum energy of negative ions is several times lower than that of positive ions. The theoretical description and Particle-in-Cell simulation of the Coulomb implosion mechanism and the evidence of the negative ion acceleration in the experiments on the high intensity laser pulse interaction with the cluster targets are presented.