Do you want to publish a course? Click here

Reconstruction of Current Densities from Magnetic Images by Bayesian Inference

69   0   0.0 ( 0 )
 Added by Colin B Clement
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electronic transport is at the heart of many phenomena in condensed matter physics and material science. Magnetic imaging is a non-invasive tool for detecting electric current in materials and devices. A two-dimensional current density can be reconstructed from an image of a single component of the magnetic field produced by the current. In this work, we approach the reconstruction problem in the framework of Bayesian inference, i.e. we solve for the most likely current density given an image obtained by a magnetic probe. To enforce a sensible current density priors are used to associate a cost with unphysical features such as pixel-to-pixel oscillations or current outside the device boundary. Beyond previous work, our approach does not require analytically tractable priors and therefore creates flexibility to use priors that have not been explored in the context of current reconstruction. Here, we implement several such priors that have desirable properties. A challenging aspect of imposing a prior is choosing the optimal strength. We describe an empirical way to determine the appropriate strength of the prior. We test our approach on numerically generated examples. Our code is released in an open-source texttt{python} package called texttt{pysquid}.



rate research

Read More

The 1-bit compressed sensing framework enables the recovery of a sparse vector x from the sign information of each entry of its linear transformation. Discarding the amplitude information can significantly reduce the amount of data, which is highly beneficial in practical applications. In this paper, we present a Bayesian approach to signal reconstruction for 1-bit compressed sensing, and analyze its typical performance using statistical mechanics. Utilizing the replica method, we show that the Bayesian approach enables better reconstruction than the L1-norm minimization approach, asymptotically saturating the performance obtained when the non-zero entries positions of the signal are known. We also test a message passing algorithm for signal reconstruction on the basis of belief propagation. The results of numerical experiments are consistent with those of the theoretical analysis.
Bayesian inference is a widely used and powerful analytical technique in fields such as astronomy and particle physics but has historically been underutilized in some other disciplines including semiconductor devices. In this work, we introduce Bayesim, a Python package that utilizes adaptive grid sampling to efficiently generate a probability distribution over multiple input parameters to a forward model using a collection of experimental measurements. We discuss the implementation choices made in the code, showcase two examples in photovoltaics, and discuss general prerequisites for the approach to apply to other systems.
An efficient technique is introduced for model inference of complex nonlinear dynamical systems driven by noise. The technique does not require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in a broad range %of parameters of dynamical models. It is applied to clinically measured blood pressure signal for the simultaneous inference of the strength, directionality, and the noise intensities in the nonlinear interaction between the cardiac and respiratory oscillations.
Measurements are inseparable from inference, where the estimation of signals of interest from other observations is called an indirect measurement. While a variety of measurement limits have been defined by the physical constraint on each setup, the fundamental limit of an indirect measurement is essentially the limit of inference. Here, we propose the concept of statistical limits on indirect measurement: the bounds of distinction between signals and noise and between a signal and another signal. By developing the asymptotic theory of Bayesian regression, we investigate the phenomenology of a typical indirect measurement and demonstrate the existence of these limits. Based on the connection between inference and statistical physics, we also provide a unified interpretation in which these limits emerge from phase transitions of inference. Our results could pave the way for novel experimental design, enabling assess to the required quality of observations according to the assumed ground truth before the concerned indirect measurement is actually performed.
The generalized Langevin equation (GLE) overcomes the limiting Markov approximation of the Langevin equation by an incorporated memory kernel and can be used to model various stochastic processes in many fields of science ranging from climate modeling over neuroscience to finance. Generally, Bayesian estimation facilitates the determination of both suitable model parameters and their credibility for a measured time series in a straightforward way. In this work we develop a realization of this estimation technique for the GLE in the case of white noise. We assume piecewise constant drift and diffusion functions and represent the characteristics of the data set by only a few coefficients, which leads to a numerically efficient procedure. The kernel function is an arbitrary time-discrete function with a fixed length $K$. We show how to determine a reasonable value of $K$ based on the data. We illustrate the abilities of both the method and the model by an example from turbulence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا