Do you want to publish a course? Click here

Detectable environmental effects in GW190521-like black-hole binaries with LISA

94   0   0.0 ( 0 )
 Added by Andrea Caputo
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

GW190521 is the compact binary with the largest masses observed to date, with at least one in the pair-instability gap. This event has also been claimed to be associated with an optical flare observed by the Zwicky Transient Facility in an Active Galactic Nucleus (AGN), possibly due to the post-merger motion of the merger remnant in the AGN gaseous disk. We show that the Laser Interferometer Space Antenna (LISA) will detect up to ten of such gas-rich black hole binaries months to years before their detection by LIGO/Virgo-like interferometers, localizing them in the sky within $approx1$ deg$^2$. LISA will also measure directly deviations from purely vacuum and stationary waveforms, arising from gas accretion, dynamical friction, and orbital motion around the AGNs massive black hole (acceleration, strong lensing, and Doppler modulation). LISA will therefore be crucial to alert and point electromagnetic telescopes ahead of time on this novel class of gas-rich sources, to gain direct insight on their physics, and to disentangle environmental effects from corrections to General Relativity that may also appear in the waveforms at low frequencies.



rate research

Read More

The gravitational-wave (GW) detection of GW190521 has provided new insights on the mass distribution of black holes and new constraints for astrophysical formation channels. With independent claims of GW190521 having significant pre-merger eccentricity, we investigate what this implies for GW190521-like binaries that form dynamically. The Laser Interferometer Space Antenna (LISA) will also be sensitive to GW190521-like binaries if they are circular from an isolated formation channel. We show, however, that GW190521-like binaries that form dynamically may skip the LISA band entirely. To this end, we simulate GW190521 analogues that dynamically form via post-Newtonian binary-single scattering. From these scattering experiments, we find that GW190521-like binaries may enter the LIGO-Virgo band with significant eccentricity as suggested by recent studies, though well below an eccentricity of $e_{rm 10Hz} lesssim 0.7$. Eccentric GW190521-like binaries further motivate the astrophysical science case for a decihertz GW observatory, such as the kilometer-scale version of the Midband Atomic Gravitational-wave Interferometric Sensor (MAGIS). Pre-merger observations of GW190521-like binaries with such a decihertz GW detector would be able to constrain the eccentricity of GW190521-like binaries to greater precision than with just LIGO-Virgo alone. These eccentricity constraints would also provide additional insights into the possible environments that GW190521-like binaries form in.
Stellar-mass black hole binaries (BHBs) near supermassive black holes (SMBH) in galactic nuclei undergo eccentricity oscillations due to gravitational perturbations from the SMBH. Previous works have shown that this channel can contribute to the overall BHB merger rate detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo Interferometer. Significantly, the SMBH gravitational perturbations on the binarys orbit may produce eccentric BHBs which are expected to be visible using the upcoming Laser Interferometer Space Antenna (LISA) for a large fraction of their lifetime before they merge in the LIGO/Virgo band. For a proof-of-concept, we show that the eccentricity oscillations of these binaries can be detected with LISA for BHBs in the local universe up to a few Mpcs, with observation periods shorter than the mission lifetime, thereby disentangling this merger channel from others. The approach presented here is straightforward to apply to a wide variety of compact object binaries with a tertiary companion.
LIGO has detected gravitational waves from massive binary black hole mergers. In order to explain the origin of such massive stellar-mass black holes, extreme metal poor stars including first stars have been invoked. However, black holes do not carry information of the metallicity. In order to check the metallicity dependence of the black hole formation, we focus on galactic black hole-main sequence binaries (BH-MSs). Using a binary population synthesis method, we find that $gaia$ can detect $sim200-400$ BH-MSs whose metallicity is $zsun$ and $sim70-400$ BH-MSs whose metallicity is $0.1zsun$. With the spectroscopic observation on 4-m class telescopes, we can check the metallicity of BH-MSs. The metallicity dependence of the black hole formation might be checked by the astrometry and spectroscopic observations.
Gravitational lensing of gravitational waves (GWs) is a powerful probe of the matter distribution in the universe. Here we study the lensing effect induced by dark matter (DM) halos on the GW signals from merging massive black holes, and we revisit the possibility of detection using the Laser Interferometer Space Antenna (LISA). In particular, we include the halos in the low-mass range of $10^5-10^9, M_odot$ since they are the most numerous according to the cold DM model. In addition, we employ the matched-filtering technique to search for weak diffraction signatures when the MBHBs have large impact parameters ($ysim10^2$). We find that about $(20-40)%$ of the MBHB in the mass range of $10^5-10^6M_odot$ and the redshift range of $4-10$ should show detectable wave-optics effects. The uncertainty comes mainly from the mass function of DM halos. Not detecting any signal during the LISA mission would imply that DM halos are significantly more massive than $10^8,M_odot$.
We investigate the ability of the Laser Interferometer Space Antenna (LISA) to measure the center of mass acceleration of stellar-origin black hole binaries emitting gravitational waves. Our analysis is based on the idea that the acceleration of the center of mass induces a time variation in the redshift of the gravitational wave, which in turn modifies its waveform. We confirm that while the cosmological acceleration is too small to leave a detectable imprint on the gravitational waveforms observable by LISA, larger peculiar accelerations may be measurable for sufficiently long lived sources. We focus on stellar mass black hole binaries, which will be detectable at low frequencies by LISA and near coalescence by ground based detectors. These sources may have large peculiar accelerations, for instance, if they form in nuclear star clusters or in AGN accretion disks. If that is the case, we find that in an astrophysical population calibrated to the LIGO-Virgo observed merger rate, LISA will be able to measure the peculiar acceleration of a small but significant fraction of the events if the mission lifetime is extended beyond the nominal duration of 4 years. In this scenario LISA will be able to assess whether black hole binaries form close to galactic centers, particularly in AGN disks, and will thus help discriminate between different formation mechanisms. Although for a nominal 4 years LISA mission the peculiar acceleration effect cannot be measured, a consistent fraction of events may be biased by strong peculiar accelerations which, if present, may imprint large systematic errors on some waveform parameters. In particular, estimates of the luminosity distance could be strongly biased and consequently induce large systematic errors on LISA measurements of the Hubble constant with stellar mass black hole binaries.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا