Do you want to publish a course? Click here

The peculiar acceleration of stellar-origin black hole binaries: measurement and biases with LISA

93   0   0.0 ( 0 )
 Added by Nicola Tamanini
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the ability of the Laser Interferometer Space Antenna (LISA) to measure the center of mass acceleration of stellar-origin black hole binaries emitting gravitational waves. Our analysis is based on the idea that the acceleration of the center of mass induces a time variation in the redshift of the gravitational wave, which in turn modifies its waveform. We confirm that while the cosmological acceleration is too small to leave a detectable imprint on the gravitational waveforms observable by LISA, larger peculiar accelerations may be measurable for sufficiently long lived sources. We focus on stellar mass black hole binaries, which will be detectable at low frequencies by LISA and near coalescence by ground based detectors. These sources may have large peculiar accelerations, for instance, if they form in nuclear star clusters or in AGN accretion disks. If that is the case, we find that in an astrophysical population calibrated to the LIGO-Virgo observed merger rate, LISA will be able to measure the peculiar acceleration of a small but significant fraction of the events if the mission lifetime is extended beyond the nominal duration of 4 years. In this scenario LISA will be able to assess whether black hole binaries form close to galactic centers, particularly in AGN disks, and will thus help discriminate between different formation mechanisms. Although for a nominal 4 years LISA mission the peculiar acceleration effect cannot be measured, a consistent fraction of events may be biased by strong peculiar accelerations which, if present, may imprint large systematic errors on some waveform parameters. In particular, estimates of the luminosity distance could be strongly biased and consequently induce large systematic errors on LISA measurements of the Hubble constant with stellar mass black hole binaries.



rate research

Read More

GW190521 is the compact binary with the largest masses observed to date, with at least one in the pair-instability gap. This event has also been claimed to be associated with an optical flare observed by the Zwicky Transient Facility in an Active Galactic Nucleus (AGN), possibly due to the post-merger motion of the merger remnant in the AGN gaseous disk. We show that the Laser Interferometer Space Antenna (LISA) will detect up to ten of such gas-rich black hole binaries months to years before their detection by LIGO/Virgo-like interferometers, localizing them in the sky within $approx1$ deg$^2$. LISA will also measure directly deviations from purely vacuum and stationary waveforms, arising from gas accretion, dynamical friction, and orbital motion around the AGNs massive black hole (acceleration, strong lensing, and Doppler modulation). LISA will therefore be crucial to alert and point electromagnetic telescopes ahead of time on this novel class of gas-rich sources, to gain direct insight on their physics, and to disentangle environmental effects from corrections to General Relativity that may also appear in the waveforms at low frequencies.
Gravitational lensing of gravitational waves (GWs) is a powerful probe of the matter distribution in the universe. Here we study the lensing effect induced by dark matter (DM) halos on the GW signals from merging massive black holes, and we revisit the possibility of detection using the Laser Interferometer Space Antenna (LISA). In particular, we include the halos in the low-mass range of $10^5-10^9, M_odot$ since they are the most numerous according to the cold DM model. In addition, we employ the matched-filtering technique to search for weak diffraction signatures when the MBHBs have large impact parameters ($ysim10^2$). We find that about $(20-40)%$ of the MBHB in the mass range of $10^5-10^6M_odot$ and the redshift range of $4-10$ should show detectable wave-optics effects. The uncertainty comes mainly from the mass function of DM halos. Not detecting any signal during the LISA mission would imply that DM halos are significantly more massive than $10^8,M_odot$.
We present a Bayesian parameter-estimation pipeline to measure the properties of inspiralling stellar-mass black hole binaries with LISA. Our strategy (i) is based on the coherent analysis of the three noise-orthogonal LISA data streams, (ii) employs accurate and computationally efficient post-Newtonian waveforms accounting for both spin-precession and orbital eccentricity, and (iii) relies on a nested sampling algorithm for the computation of model evidences and posterior probability density functions of the full 17 parameters describing a binary. We demonstrate the performance of this approach by analyzing the LISA Data Challenge (LDC-1) dataset, consisting of 66 quasi-circular, spin-aligned binaries with signal-to-noise ratios ranging from 3 to 14 and times to merger ranging from 3000 to 2 years. We recover 22 binaries with signal-to-noise ratio higher than 8. Their chirp masses are typically measured to better than $0.02 M_odot$ at $90%$ confidence, while the sky-location accuracy ranges from 1 to 100 square degrees. The mass ratio and the spin parameters can only be constrained for sources that merge during the mission lifetime. In addition, we report on the successful recovery of an eccentric, spin-precessing source at signal-to-noise ratio 15 for which we can measure an eccentricity of $3times 10^{-3}$.
Stellar-mass black hole binaries (SBHBs), like those currently being detected with the ground-based gravitational-wave (GW) observatories LIGO and Virgo, are also an anticipated GW source for LISA. LISA will observe them during the early inspiral stage of evolution; some of them will chirp through the LISA band and reappear some time later in the band of $3^{rd}$ generation ground-based detectors. SBHBs could serve as laboratories for testing the theory of General Relativity and inferring the astrophysical properties of the underlying population. In this study, we assess LISAs ability to infer the parameters of those systems, a crucial first step in understanding and interpreting the observation of those binaries and their use in fundamental physics and astrophysics. We simulate LISA observations for several fiducial sources and perform a full Bayesian analysis. We demonstrate and explain degeneracies in the parameters of some systems. We show that the redshifted chirp mass and the sky location are always very well determined, with typical errors below $10^{-4}$ (fractional) and $0.4 {rm deg^2}$. The luminosity distance to the source is typically measured within $40-60%$, resulting in a measurement of the chirp mass in the source frame of $mathcal{O}(1 %)$. The error on the time to coalescence improves from $mathcal{O}(1 {rm day})$ to $mathcal{O}(30 {rm s})$ as we observe the systems closer to their merger. We introduce an augmented Fisher-matrix analysis which gives reliable predictions for the intrinsic parameters compared to the full Bayesian analysis. Finally, we show that combining the use of the long-wavelength approximation for the LISA instrumental response together with the introduction of a degradation function at high frequencies yields reliable results for the posterior distribution when used self-consistently, but not in the analysis of real LISA data.
The signal-to-noise ratio (SNR) for black hole quasinormal mode sources of low-frequency gravitational waves is estimated using a Monte Carlo approach that replaces the all-sky average approximation. We consider an eleven dimensional parameter space that includes both source and detector parameters. We find that in the black-hole mass range $Msim 4$-$7times 10^6M_{odot}$ the SNR is significantly higher than the SNR for the all-sky average case, as a result of the variation of the spin parameter of the sources. This increased SNR may translate to a higher event rate for the Laser Interferometer Space Antenna (LISA). We also study the directional dependence of the SNR, show at which directions in the sky LISA will have greater response, and identify the LISA blind spots.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا