Do you want to publish a course? Click here

Vacancies in graphene: an application of adiabatic quantum optimization

68   0   0.0 ( 0 )
 Added by Ilaria Siloi Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum annealers have grown in complexity to the point that quantum computations involving few thousands of qubits are now possible. In this paper, textcolor{black}{with the intentions to show the feasibility of quantum annealing to tackle problems of physical relevance, we used a simple model, compatible with the capability of current quantum annealers, to study} the relative stability of graphene vacancy defects. By mapping the crucial interactions that dominate carbon-vacancy interchange onto a quadratic unconstrained binary optimization problem, our approach exploits textcolor{black}{the ground state as well the excited states found by} the quantum annealer to extract all the possible arrangements of multiple defects on the graphene sheet together with their relative formation energies. This approach reproduces known results and provides a stepping stone towards applications of quantum annealing to problems of physical-chemical interest.



rate research

Read More

Adiabatic quantum optimization has been proposed as a route to solve NP-complete problems, with a possible quantum speedup compared to classical algorithms. However, the precise role of quantum effects, such as entanglement, in these optimization protocols is still unclear. We propose a setup of cold trapped ions that allows one to quantitatively characterize, in a controlled experiment, the interplay of entanglement, decoherence, and non-adiabaticity in adiabatic quantum optimization. We show that, in this way, a broad class of NP-complete problems becomes accessible for quantum simulations, including the knapsack problem, number partitioning, and instances of the max-cut problem. Moreover, a general theoretical study reveals correlations of the success probability with entanglement at the end of the protocol. From exact numerical simulations for small systems and linear ramps, however, we find no substantial correlations with the entanglement during the optimization. For the final state, we derive analytically a universal upper bound for the success probability as a function of entanglement, which can be measured in experiment. The proposed trapped-ion setups and the presented study of entanglement address pertinent questions of adiabatic quantum optimization, which may be of general interest across experimental platforms.
Farhi and others have introduced the notion of solving NP problems using adiabatic quantum com- puters. We discuss an application of this idea to the problem of integer factorization, together with a technique we call gluing which can be used to build adiabatic models of interesting problems. Although adiabatic quantum computers already exist, they are likely to be too small to directly tackle problems of interesting practical sizes for the foreseeable future. Therefore, we discuss techniques for decomposition of large problems, which permits us to fully exploit such hardware as may be available. Numerical re- sults suggest that even simple decomposition techniques may yield acceptable results with subexponential overhead, independent of the performance of the underlying device.
We report the realization of a nuclear magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic quantum algorithms offer new insight into how quantum resources can be used to solve hard problems. This experiment uses a particularly well suited three quantum bit molecule and was made possible by introducing a technique that encodes general instances of the given optimization problem into an easily applicable Hamiltonian. Our results indicate an optimal run time of the adiabatic algorithm that agrees well with the prediction of a simple decoherence model.
Adiabatic quantum optimization offers a new method for solving hard optimization problems. In this paper we calculate median adiabatic times (in seconds) determined by the minimum gap during the adiabatic quantum optimization for an NP-hard Ising spin glass instance class with up to 128 binary variables. Using parameters obtained from a realistic superconducting adiabatic quantum processor, we extract the minimum gap and matrix elements using high performance Quantum Monte Carlo simulations on a large-scale Internet-based computing platform. We compare the median adiabatic times with the median running times of two classical solvers and find that, for the considered problem sizes, the adiabatic times for the simulated processor architecture are about 4 and 6 orders of magnitude shorter than the two classical solvers times. This shows that if the adiabatic time scale were to determine the computation time, adiabatic quantum optimization would be significantly superior to those classical solvers for median spin glass problems of at least up to 128 qubits. We also discuss important additional constraints that affect the performance of a realistic system.
The influence of periodic edge vacancies and antidot arrays on the thermoelectric properties of zigzag graphene nanoribbons is investigated. Using the Greens function method, the tight-binding approximation for the electron Hamiltonian and the 4th nearest neighbor approximation for the phonon dynamical matrix, we calculate the Seebeck coefficient and the thermoelectric figure of merit. It is found that, at a certain periodic arrangement of vacancies on both edges of zigzag nanoribbon, a finite band gap opens and almost twofold degenerate energy levels appear. As a result, a marked increase in the Seebeck coefficient takes place. It is shown that an additional enhancement of the thermoelectric figure of merit can be achieved by a combination of periodic edge defects with an antidot array.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا