We report the realization of a nuclear magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic quantum algorithms offer new insight into how quantum resources can be used to solve hard problems. This experiment uses a particularly well suited three quantum bit molecule and was made possible by introducing a technique that encodes general instances of the given optimization problem into an easily applicable Hamiltonian. Our results indicate an optimal run time of the adiabatic algorithm that agrees well with the prediction of a simple decoherence model.
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shors algorithm. We implement the algorithm in an NMR quantum information processor and experimentally factorize the number 21. Numerical simulations indicate that the running time grows only quadratically with the number of qubits.
Quantum adiabatic passages can be greatly accelerated by a suitable control field, called a counter-diabatic field, which varies during the scan through resonance. Here, we implement this technique on the electron spin of a single nitrogen-vacancy center in diamond. We demonstrate t
Grovers algorithm has achieved great success. But quantum search algorithms still are not complete algorithms because of Grovers Oracle. We concerned on this problem and present a new quantum search algorithm in adiabatic model without Oracle. We analyze the general difficulties in quantum search algorithms and show how to solve them in the present algorithm. As well this algorithm could deal with both single-solution and multi-solution searches without modification. We also implement this algorithm on NMR quantum computer. It is the first experiment which perform a real quantum database search rather than a marked-state search.
Topological orders are exotic phases of matter existing in strongly correlated quantum systems, which are beyond the usual symmetry description and cannot be distinguished by local order parameters. Here we report an experimental quantum simulation of the Wen-plaquette spin model with different topological orders in a nuclear magnetic resonance system, and observe the adiabatic transition between two $Z_2$ topological orders through a spin-polarized phase by measuring the nonlocal closed-string (Wilson loop) operator. Moreover, we also measure the entanglement properties of the topological orders. This work confirms the adiabatic method for preparing topologically ordered states and provides an experimental tool for further studies of complex quantum systems.
Using nuclear magnetic resonance (NMR) techniques with three-qubit sample, we have experimentally implemented the highly structured algorithm for the 1-SAT problem proposed by Hogg. A simplified temporal averaging procedure was employed to the three-qubit spin pseudo-pure state. The algorithm was completed with only a single evaluation of structure of the problem and the solutions were found with probability 100%, which outperform both unstructured quantum and the best classical search algorithm.