Do you want to publish a course? Click here

Enhancement of thermoelectric figure of merit in zigzag graphene nanoribbons with periodic edge vacancies

154   0   0.0 ( 0 )
 Added by Dmitry Kolesnikov
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The influence of periodic edge vacancies and antidot arrays on the thermoelectric properties of zigzag graphene nanoribbons is investigated. Using the Greens function method, the tight-binding approximation for the electron Hamiltonian and the 4th nearest neighbor approximation for the phonon dynamical matrix, we calculate the Seebeck coefficient and the thermoelectric figure of merit. It is found that, at a certain periodic arrangement of vacancies on both edges of zigzag nanoribbon, a finite band gap opens and almost twofold degenerate energy levels appear. As a result, a marked increase in the Seebeck coefficient takes place. It is shown that an additional enhancement of the thermoelectric figure of merit can be achieved by a combination of periodic edge defects with an antidot array.



rate research

Read More

139 - H. Sevincli , G. Cuniberti 2009
We investigate electron and phonon transport through edge disordered zigzag graphene nanoribbons based on the same methodological tool of nonequilibrium Green functions. We show that edge disorder dramatically reduces phonon thermal transport while being only weakly detrimental to electronic conduction. The behavior of the electronic and phononic elastic mean free paths points to the possibility of realizing an electron-crystal coexisting with a phonon-glass. The calculated thermoelectric figure of merit (ZT) values qualify zigzag graphene nanoribbons as a very promising material for thermoelectric applications.
ZnO is a promising candidate as an environment friendly thermoelectric (TE) material. However, the poor TE figure of merit (zT) needs to be addressed to achieve significant TE efficiency for commercial applications. Here we demonstrate that selective enhancement in phonon scattering leads to increase in zT of RGO encapsulated Al-doped ZnO core shell nanohybrids, synthesized via a facile and scalable method. The incorporation of 1 at% Al with 1.5 wt% RGO into ZnO (AGZO) has been found to show significant enhancement in zT (=0.52 at 1100 K) which is an order of magnitude larger compared to that of bare undoped ZnO. Photoluminescence and X-ray photoelectron spectroscopy measurements confirm that RGO encapsulation significantly quenches surface oxygen vacancies in ZnO along with nucleation of new interstitial Zn donor states. Tunneling spectroscopy reveals that the band gap of ~ 3.4 eV for bare ZnO reduces effectively to ~ 0.5 eV upon RGO encapsulation, facilitating charge transport. The electrical conductivity enhancement also benefits from the more than 95% densification achieved, using the spark plasma sintering method, which aids reduction of GO into RGO. The same Al doping and RGO capping synergistically brings about drastic reduction of thermal conductivity, through enhanced phonon-phonon and point defect-phonon scatterings. These opposing effects on electrical and thermal conductivities enhances the power factors as well as the zT value. Overall, a practically viable route for synthesis of oxide - RGO TE material which could find its practical applications for the high-temperature TE power generation.
Graphene-based nanostructures exhibit a vast range of exciting electronic properties that are absent in extended graphene. For example, quantum confinement in carbon nanotubes and armchair graphene nanoribbons (AGNRs) leads to the opening of substantial electronic band gaps that are directly linked to their structural boundary conditions. Even more intriguing are nanostructures with zigzag edges, which are expected to host spin-polarized electronic edge states and can thus serve as key elements for graphene-based spintronics. The most prominent example is zigzag graphene nanoribbons (ZGNRs) for which the edge states are predicted to couple ferromagnetically along the edge and antiferromagnetically between them. So far, a direct observation of the spin-polarized edge states for specifically designed and controlled zigzag edge topologies has not been achieved. This is mainly due to the limited precision of current top-down approaches, which results in poorly defined edge structures. Bottom-up fabrication approaches, on the other hand, were so far only successfully applied to the growth of AGNRs and related structures. Here, we describe the successful bottom-up synthesis of ZGNRs, which are fabricated by the surface-assisted colligation and cyclodehydrogenation of specifically designed precursor monomers including carbon groups that yield atomically precise zigzag edges. Using scanning tunnelling spectroscopy we prove the existence of edge-localized states with large energy splittings. We expect that the availability of ZGNRs will finally allow the characterization of their predicted spin-related properties such as spin confinement and filtering, and ultimately add the spin degree of freedom to graphene-based circuitry.
It is now possible to produce graphene nanoribbons (GNRs) with atomically defined widths. GNRs offer many opportunities for electronic devices and composites, if it is possible to establish the link between edge structure and functionalisation, and resultant GNR properties. Switching hydrogen edge termination to larger more complex functional groups such as hydroxyls or thiols induces strain at the ribbon edge. However we show that this strain is then relieved via the formation of static out-of-plane ripples. The resultant ribbons have a significantly reduced Youngs Modulus which varies as a function of ribbon width, modified band gaps, as well as heterogeneous chemical reactivity along the edge. Rather than being the exception, such static edge ripples are likely on the majority of functionalized graphene ribbon edges.
We unveil the nature of the structural disorder in bottom-up zigzag graphene nanoribbons along with its effect on the magnetism and electronic transport on the basis of scanning probe microscopies and first-principles calculations. We find that edge-missing m-xylene units emerging during the cyclodehydrogenation step of the on-surface synthesis are the most common point defects. These bite defects act as spin-1 paramagnetic centers, severely disrupt the conductance spectrum around the band extrema, and give rise to spin-polarized charge transport. We further show that the electronic conductance across graphene nanoribbons is more sensitive to bite defects forming at the zigzag edges than at the armchair ones. Our work establishes a comprehensive understanding of the low-energy electronic properties of disordered bottom-up graphene nanoribbons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا