Do you want to publish a course? Click here

Structural Forecasting for Tropical Cyclone Intensity Prediction: Providing Insight with Deep Learning

385   0   0.0 ( 0 )
 Added by Irwin McNeely
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Tropical cyclone (TC) intensity forecasts are ultimately issued by human forecasters. The human in-the-loop pipeline requires that any forecasting guidance must be easily digestible by TC experts if it is to be adopted at operational centers like the National Hurricane Center. Our proposed framework leverages deep learning to provide forecasters with something neither end-to-end prediction models nor traditional intensity guidance does: a powerful tool for monitoring high-dimensional time series of key physically relevant predictors and the means to understand how the predictors relate to one another and to short-term intensity changes.



rate research

Read More

The prediction of the intensity, location and time of the landfall of a tropical cyclone well advance in time and with high accuracy can reduce human and material loss immensely. In this article, we develop a Long Short-Term memory based Recurrent Neural network model to predict intensity (in terms of maximum sustained surface wind speed), location (latitude and longitude), and time (in hours after the observation period) of the landfall of a tropical cyclone which originates in the North Indian ocean. The model takes as input the best track data of cyclone consisting of its location, pressure, sea surface temperature, and intensity for certain hours (from 12 to 36 hours) anytime during the course of the cyclone as a time series and then provide predictions with high accuracy. For example, using 24 hours data of a cyclone anytime during its course, the model provides state-of-the-art results by predicting landfall intensity, time, latitude, and longitude with a mean absolute error of 4.24 knots, 4.5 hours, 0.24 degree, and 0.37 degree respectively, which resulted in a distance error of 51.7 kilometers from the landfall location. We further check the efficacy of the model on three recent devastating cyclones Bulbul, Fani, and Gaja, and achieved better results than the test dataset.
The COVID-19 pandemic represents the most significant public health disaster since the 1918 influenza pandemic. During pandemics such as COVID-19, timely and reliable spatio-temporal forecasting of epidemic dynamics is crucial. Deep learning-based time series models for forecasting have recently gained popularity and have been successfully used for epidemic forecasting. Here we focus on the design and analysis of deep learning-based models for COVID-19 forecasting. We implement multiple recurrent neural network-based deep learning models and combine them using the stacking ensemble technique. In order to incorporate the effects of multiple factors in COVID-19 spread, we consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions. To overcome the sparsity of training data and to address the dynamic correlation of the disease, we propose clustering-based training for high-resolution forecasting. The methods help us to identify the similar trends of certain groups of regions due to various spatio-temporal effects. We examine the proposed method for forecasting weekly COVID-19 new confirmed cases at county-, state-, and country-level. A comprehensive comparison between different time series models in COVID-19 context is conducted and analyzed. The results show that simple deep learning models can achieve comparable or better performance when compared with more complicated models. We are currently integrating our methods as a part of our weekly forecasts that we provide state and federal authorities.
Tropical cyclones are one of the most powerful and destructive natural phenomena on earth. Tropical storms and heavy rains can cause floods, which lead to human lives and economic loss. Devastating winds accompanying cyclones heavily affect not only the coastal regions, even distant areas. Our study focuses on the intensity estimation, particularly cyclone grade and maximum sustained surface wind speed (MSWS) of a tropical cyclone over the North Indian Ocean. We use various machine learning algorithms to estimate cyclone grade and MSWS. We have used the basin of origin, date, time, latitude, longitude, estimated central pressure, and pressure drop as attributes of our models. We use multi-class classification models for the categorical outcome variable, cyclone grade, and regression models for MSWS as it is a continuous variable. Using the best track data of 28 years over the North Indian Ocean, we estimate grade with an accuracy of 88% and MSWS with a root mean square error (RMSE) of 2.3. For higher grade categories (5-7), accuracy improves to an average of 98.84%. We tested our model with two recent tropical cyclones in the North Indian Ocean, Vayu and Fani. For grade, we obtained an accuracy of 93.22% and 95.23% respectively, while for MSWS, we obtained RMSE of 2.2 and 3.4 and $R^2$ of 0.99 and 0.99, respectively.
Tropical cyclones can be of varied intensity and cause a huge loss of lives and property if the intensity is high enough. Therefore, the prediction of the intensity of tropical cyclones advance in time is of utmost importance. We propose a novel stacked bidirectional long short-term memory network (BiLSTM) based model architecture to predict the intensity of a tropical cyclone in terms of Maximum surface sustained wind speed (MSWS). The proposed model can predict MSWS well advance in time (up to 72 h) with very high accuracy. We have applied the model on tropical cyclones in the North Indian Ocean from 1982 to 2018 and checked its performance on two recent tropical cyclones, namely, Fani and Vayu. The model predicts MSWS (in knots) for the next 3, 12, 24, 36, 48, 60, and 72 hours with a mean absolute error of 1.52, 3.66, 5.88, 7.42, 8.96, 10.15, and 11.92, respectively.
Air pollution has a wide range of implications on agriculture, economy, road accidents, and health. In this paper, we use novel deep learning methods for short-term (multi-step-ahead) air-quality prediction in selected parts of Delhi, India. Our deep learning methods comprise of long short-term memory (LSTM) network models which also include some rece

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا