No Arabic abstract
Tropical cyclones are one of the most powerful and destructive natural phenomena on earth. Tropical storms and heavy rains can cause floods, which lead to human lives and economic loss. Devastating winds accompanying cyclones heavily affect not only the coastal regions, even distant areas. Our study focuses on the intensity estimation, particularly cyclone grade and maximum sustained surface wind speed (MSWS) of a tropical cyclone over the North Indian Ocean. We use various machine learning algorithms to estimate cyclone grade and MSWS. We have used the basin of origin, date, time, latitude, longitude, estimated central pressure, and pressure drop as attributes of our models. We use multi-class classification models for the categorical outcome variable, cyclone grade, and regression models for MSWS as it is a continuous variable. Using the best track data of 28 years over the North Indian Ocean, we estimate grade with an accuracy of 88% and MSWS with a root mean square error (RMSE) of 2.3. For higher grade categories (5-7), accuracy improves to an average of 98.84%. We tested our model with two recent tropical cyclones in the North Indian Ocean, Vayu and Fani. For grade, we obtained an accuracy of 93.22% and 95.23% respectively, while for MSWS, we obtained RMSE of 2.2 and 3.4 and $R^2$ of 0.99 and 0.99, respectively.
Our collective understanding of azimuthally-asymmetric features within the coherent structure of a tropical cyclone (TC) continues to improve with the availability of more detailed observations and high-resolution model outputs. However, a precise understanding of how these asymmetries impact TC intensity changes is lacking. Prior attempts at investigating the asymmetric impacts follow a mean-eddy partitioning that condenses the effect of all the asymmetries into one term and fails to highlight the differences in the role of asymmetries at different scales. In this study, we present a novel energetics-based approach to analyze the asymmetric impacts at multiple length-scales during periods of TC rapid intensity changes. Using model outputs of TCs under low and high shear, we compute the different energy pathways that enhance/suppress the growth of multi-scale asymmetries in the wavenumber (WN) domain. We then compare and contrast the energetics of the mean flow field (WN 0) with that of the persistent, coherent vortex-scale asymmetric structures (WNs 1,2) and the more local, transient, sub-vortex-scale asymmetries (WNs $geq$ 3). We find in our case-studies that the dominant mechanisms of growth/decay of the asymmetries are the baroclinic conversion from available potential to kinetic energy at individual scales of asymmetries, and the transactions of kinetic energy between the asymmetries of various length-scales; rather than the barotropic mean-eddy transactions as is typically assumed. Our case-study analysis further shows that the growth/decay of asymmetries is largely independent of the mean. Certain aspects of eddy energetics can potentially serve as early-warning indicators of TC rapid intensity changes.
Progress within physical oceanography has been concurrent with the increasing sophistication of tools available for its study. The incorporation of machine learning (ML) techniques offers exciting possibilities for advancing the capacity and speed of established methods and also for making substantial and serendipitous discoveries. Beyond vast amounts of complex data ubiquitous in many modern scientific fields, the study of the ocean poses a combination of unique challenges that ML can help address. The observational data available is largely spatially sparse, limited to the surface, and with few time series spanning more than a handful of decades. Important timescales span seconds to millennia, with strong scale interactions and numerical modelling efforts complicated by details such as coastlines. This review covers the current scientific insight offered by applying ML and points to where there is imminent potential. We cover the main three branches of the field: observations, theory, and numerical modelling. Highlighting both challenges and opportunities, we discuss both the historical context and salient ML tools. We focus on the use of ML in situ sampling and satellite observations, and the extent to which ML applications can advance theoretical oceanographic exploration, as well as aid numerical simulations. Applications that are also covered include model error and bias correction and current and potential use within data assimilation. While not without risk, there is great interest in the potential benefits of oceanographic ML applications; this review caters to this interest within the research community.
Tropical cyclone (TC) intensity forecasts are ultimately issued by human forecasters. The human in-the-loop pipeline requires that any forecasting guidance must be easily digestible by TC experts if it is to be adopted at operational centers like the National Hurricane Center. Our proposed framework leverages deep learning to provide forecasters with something neither end-to-end prediction models nor traditional intensity guidance does: a powerful tool for monitoring high-dimensional time series of key physically relevant predictors and the means to understand how the predictors relate to one another and to short-term intensity changes.
This study investigated an approach to improve the accuracy of computationally lightweight surrogate models by updating forecasts based on historical accuracy relative to sparse observation data. Using a lightweight, ocean-wave forecasting model, we created a large number of model ensembles, with perturbed inputs, for a two-year study period. Forecasts were aggregated using a machine-learning algorithm that combined forecasts from multiple, independent models into a single best-estimate prediction of the true state. The framework was applied to a case-study site in Monterey Bay, California. A~learning-aggregation technique used historical observations and model forecasts to calculate a weight for each ensemble member. Weighted ensemble predictions were compared to measured wave conditions to evaluate performance against present state-of-the-art. Finally, we discussed how this framework, which integrates ensemble aggregations and surrogate models, can be used to improve forecasting systems and further enable scientific process studies.
Assessments of impacts of climate change and future projections over the Indian region, have so far relied on a single regional climate model (RCM) - eg., the PRECIS RCM of the Hadley Centre, UK. While these assessments have provided inputs to various reports (e.g., INCCA 2010; NATCOMM2 2012), it is important to have an ensemble of climate projections drawn from multiple RCMs due to large uncertainties in regional-scale climate projections. Ensembles of multi-RCM projections driven under different perceivable socio-economic scenarios are required to capture the probable path of growth, and provide the behavior of future climate and impacts on various biophysical systems and economic sectors dependent on such systems. The Centre for Climate Change Research, Indian Institute of Tropical Meteorology (CCCR-IITM) has generated an ensemble of high resolution downscaled projections of regional climate and monsoon over South Asia until 2100 for the Intergovernmental Panel for Climate Change (IPCC)using a RCM (ICTP-RegCM4) at 50 km horizontal resolution, by driving the regional model with lateral and lower boundary conditions from multiple global atmosphere-ocean coupled models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The future projections are based on three Representation Concentration Pathway (RCP) scenarios (viz., RCP2.6, RCP4.5, RCP8.5) of the IPCC.