Do you want to publish a course? Click here

CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural Summarization Systems

61   0   0.0 ( 0 )
 Added by Yiran Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Neural network-based models augmented with unsupervised pre-trained knowledge have achieved impressive performance on text summarization. However, most existing evaluation methods are limited to an in-domain setting, where summarizers are trained and evaluated on the same dataset. We argue that this approach can narrow our understanding of the generalization ability for different summarization systems. In this paper, we perform an in-depth analysis of characteristics of different datasets and investigate the performance of different summarization models under a cross-dataset setting, in which a summarizer trained on one corpus will be evaluated on a range of out-of-domain corpora. A comprehensive study of 11 representative summarization systems on 5 datasets from different domains reveals the effect of model architectures and generation ways (i.e. abstractive and extractive) on model generalization ability. Further, experimental results shed light on the limitations of existing summarizers. Brief introduction and supplementary code can be found in https://github.com/zide05/CDEvalSumm.



rate research

Read More

We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of crosslingual abstractive summarization systems. We extract article and summary pairs in 18 languages from WikiHow, a high quality, collaborative resource of how-to guides on a diverse set of topics written by human authors. We create gold-standard article-summary alignments across languages by aligning the images that are used to describe each how-to step in an article. As a set of baselines for further studies, we evaluate the performance of existing cross-lingual abstractive summarization methods on our dataset. We further propose a method for direct crosslingual summarization (i.e., without requiring translation at inference time) by leveraging synthetic data and Neural Machine Translation as a pre-training step. Our method significantly outperforms the baseline approaches, while being more cost efficient during inference.
Neural generative models have been become increasingly popular when building conversational agents. They offer flexibility, can be easily adapted to new domains, and require minimal domain engineering. A common criticism of these systems is that they seldom understand or use the available dialog history effectively. In this paper, we take an empirical approach to understanding how these models use the available dialog history by studying the sensitivity of the models to artificially introduced unnatural changes or perturbations to their context at test time. We experiment with 10 different types of perturbations on 4 multi-turn dialog datasets and find that commonly used neural dialog architectures like recurrent and transformer-based seq2seq models are rarely sensitive to most perturbations such as missing or reordering utterances, shuffling words, etc. Also, by open-sourcing our code, we believe that it will serve as a useful diagnostic tool for evaluating dialog systems in the future.
115 - Siddhant Garg 2019
Recent works show that ordering of the training data affects the model performance for Neural Machine Translation. Several approaches involving dynamic data ordering and data sharding based on curriculum learning have been analysed for the their performance gains and faster convergence. In this work we propose to empirically study several ordering approaches for the training data based on different metrics and evaluate their impact on the model performance. Results from our study show that pre-fixing the ordering of the training data based on perplexity scores from a pre-trained model performs the best and outperforms the default approach of randomly shuffling the training data every epoch.
There has been a rapid development in data-driven task-oriented dialogue systems with the benefit of large-scale datasets. However, the progress of dialogue systems in low-resource languages lags far behind due to the lack of high-quality data. To advance the cross-lingual technology in building dialog systems, DSTC9 introduces the task of cross-lingual dialog state tracking, where we test the DST module in a low-resource language given the rich-resource training dataset. This paper studies the transferability of a cross-lingual generative dialogue state tracking system using a multilingual pre-trained seq2seq model. We experiment under different settings, including joint-training or pre-training on cross-lingual and cross-ontology datasets. We also find out the low cross-lingual transferability of our approaches and provides investigation and discussion.
Despite constant improvements in machine translation quality, automatic poetry translation remains a challenging problem due to the lack of open-sourced parallel poetic corpora, and to the intrinsic complexities involved in preserving the semantics, style, and figurative nature of poetry. We present an empirical investigation for poetry translation along several dimensions: 1) size and style of training data (poetic vs. non-poetic), including a zero-shot setup; 2) bilingual vs. multilingual learning; and 3) language-family-specific models vs. mixed-multilingual models. To accomplish this, we contribute a parallel dataset of poetry translations for several language pairs. Our results show that multilingual fine-tuning on poetic text significantly outperforms multilingual fine-tuning on non-poetic text that is 35X larger in size, both in terms of automatic metrics (BLEU, BERTScore) and human evaluation metrics such as faithfulness (meaning and poetic style). Moreover, multilingual fine-tuning on poetic data outperforms emph{bilingual} fine-tuning on poetic data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا