Do you want to publish a course? Click here

Five New Post-Main-Sequence Debris Disks with Gaseous Emission

127   0   0.0 ( 0 )
 Added by Erik Dennihy
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of debris disks, the products of the collisional evolution of rocky planetesimals, can be used to trace planetary activity across a wide range of stellar types. The most common end points of stellar evolution are no exception as debris disks have been observed around several dozen white dwarf stars. But instead of planetary formation, post-main-sequence debris disks are a signpost of planetary destruction, resulting in compact debris disks from the tidal disruption of remnant planetesimals. In this work, we present the discovery of five new debris disks around white dwarf stars with gaseous debris in emission. All five systems exhibit excess infrared radiation from dusty debris, emission lines from gaseous debris, and atmospheric absorption features indicating on-going accretion of metal-rich debris. In four of the systems, we detect multiple metal species in emission, some of which occur at strengths and transitions previously unseen in debris disks around white dwarf stars. Our first year of spectroscopic follow-up hints at strong variability in the emission lines that can be studied in the future, expanding the range of phenomena these post-main-sequence debris disks exhibit.



rate research

Read More

The presence of dusty debris around main sequence stars denotes the existence of planetary systems. Such debris disks are often identified by the presence of excess continuum emission at infrared and (sub-)millimetre wavelengths, with measurements at longer wavelengths tracing larger and cooler dust grains. The exponent of the slope of the disk emission at sub-millimetre wavelengths, `q, defines the size distribution of dust grains in the disk. This size distribution is a function of the rigid strength of the dust producing parent planetesimals. As part of the survey `PLAnetesimals around TYpical Pre-main seqUence Stars (PLATYPUS) we observed six debris disks at 9-mm using the Australian Telescope Compact Array. We obtain marginal (~3-sigma) detections of three targets: HD 105, HD 61005, and HD 131835. Upper limits for the three remaining disks, HD20807, HD109573, and HD109085, provide further constraint of the (sub-)millimetre slope of their spectral energy distributions. The values of q (or their limits) derived from our observations are all smaller than the oft-assumed steady state collisional cascade model (q = 3.5), but lie well within the theoretically expected range for debris disks q ~ 3 to 4. The measured q values for our targets are all < 3.3, consistent with both collisional modelling results and theoretical predictions for parent planetesimal bodies being `rubble piles held together loosely by their self-gravity.
Millimetre continuum observations of debris discs can provide insights into the physical and dynamical properties of the unseen planetesimals that these discs host. The material properties and collisional models of planetesimals leave their signature on the grain size distribution, which can be traced through the millimetre spectral index. We present 8.8 mm observations of the debris discs HD 48370, CPD 72 2713, HD 131488, and HD 32297 using the Australian Telescope Compact Array (ATCA) as part of the PLanetesimals Around TYpicalPre-main seqUence Stars (PLATYPUS) survey. We detect all four targets with a characteristic beam size of 5 arcseconds and derive a grain size distribution parameter that is consistent with collisional cascade models and theoretical predictions for parent planetesimal bodies where binding is dominated by self-gravity. We combine our sample with 19 other millimetre-wavelength detected debris discs from the literature and calculate a weighted mean grain size power law index which is close to analytical predictions for a classical steady state collisional cascade model. We suggest the possibility of two distributions of q in our debris disc sample; a broad distribution (where q is approximately 3.2 to 3.7) for typical debris discs (gas-poor/non-detection), and a narrow distribution (where q is less than 3.2) for bright gas-rich discs. Or alternatively, we suggest that there exists an observational bias between the grain size distribution parameter and absolute flux which may be attributed to the detection rates of faint debris discs at cm wavelengths.
Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R > 100 AU. Here we present new Herschel PACS and re-analyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper belt size to R > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14 along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS PSF size (50% of energy enclosed within radius 4.23). HD 105211 also has a 24-micron infrared excess that was previously overlooked because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius ~3 microns, though the minimum grain gradius is larger than the radiation pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of model blackbody disks. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 0.00002 <= L/L* <= 0.0002, consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.
109 - Ryan Miranda IAS 2018
Spectroscopic observations of some metal-rich white dwarfs (WDs), believed to be polluted by planetary material, reveal the presence of compact gaseous metallic disks orbiting them. The observed variability of asymmetric, double-peaked emission line profiles in about half of such systems could be interpreted as the signature of precession of an eccentric gaseous debris disk. The variability timescales --- from decades down to $1.4$ yr (recently inferred for the debris disk around HE 1349--2305) --- are in rough agreement with the rate of general relativistic (GR) precession in the test particle limit. However, it has not been demonstrated that this mechanism can drive such a fast, coherent precession of a radially extended (out to $1 R_odot$) gaseous disk mediated by internal stresses (pressure). Here we use the linear theory of eccentricity evolution in hydrodynamic disks to determine several key properties of eccentric modes in gaseous debris disks around WDs. We find a critical dependence of both the precession period and radial eccentricity distribution of the modes on the inner disk radius, $r_mathrm{in}$. For small inner radii, $r_mathrm{in} lesssim (0.2 - 0.4) R_odot$, the modes are GR-driven, with periods of $approx 1 - 10$ yr. For $r_mathrm{in} gtrsim (0.2 - 0.4) R_odot$, the modes are pressure-dominated, with periods of $approx 3 - 20$ yr. Correspondence between the variability periods and inferred inner radii of the observed disks is in general agreement with this trend. In particular, the short period of HE 1349--2305 is consistent with its small $r_mathrm{in}$. Circum-WD debris disks may thus serve as natural laboratories for studying the evolution of eccentric gaseous disks.
AU Microscopii (AU Mic) is the second closest pre main sequence star, at a distance of 9.79 parsecs and with an age of 22 million years. AU Mic possesses a relatively rare and spatially resolved3 edge-on debris disk extending from about 35 to 210 astronomical units from the star, and with clumps exhibiting non-Keplerian motion. Detection of newly formed planets around such a star is challenged by the presence of spots, plage, flares and other manifestations of magnetic activity on the star. Here we report observations of a planet transiting AU Mic. The transiting planet, AU Mic b, has an orbital period of 8.46 days, an orbital distance of 0.07 astronomical units, a radius of 0.4 Jupiter radii, and a mass of less than 0.18 Jupiter masses at 3 sigma confidence. Our observations of a planet co-existing with a debris disk offer the opportunity to test the predictions of current models of planet formation and evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا