Do you want to publish a course? Click here

Herschel Observations and Updated Spectral Energy Distributions of Five Sunlike Stars with Debris Disks

221   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R > 100 AU. Here we present new Herschel PACS and re-analyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper belt size to R > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14 along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS PSF size (50% of energy enclosed within radius 4.23). HD 105211 also has a 24-micron infrared excess that was previously overlooked because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius ~3 microns, though the minimum grain gradius is larger than the radiation pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of model blackbody disks. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 0.00002 <= L/L* <= 0.0002, consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.

rate research

Read More

Observations of debris disks, the products of the collisional evolution of rocky planetesimals, can be used to trace planetary activity across a wide range of stellar types. The most common end points of stellar evolution are no exception as debris disks have been observed around several dozen white dwarf stars. But instead of planetary formation, post-main-sequence debris disks are a signpost of planetary destruction, resulting in compact debris disks from the tidal disruption of remnant planetesimals. In this work, we present the discovery of five new debris disks around white dwarf stars with gaseous debris in emission. All five systems exhibit excess infrared radiation from dusty debris, emission lines from gaseous debris, and atmospheric absorption features indicating on-going accretion of metal-rich debris. In four of the systems, we detect multiple metal species in emission, some of which occur at strengths and transitions previously unseen in debris disks around white dwarf stars. Our first year of spectroscopic follow-up hints at strong variability in the emission lines that can be studied in the future, expanding the range of phenomena these post-main-sequence debris disks exhibit.
The $Herschel$ Space telescope carried out an unprecedented survey of nearby stars for debris disks. The dust present in these debris disks scatters and polarizes stellar light in the visible part of the spectrum. We explore what can be learned with aperture polarimetry and detailed radiative transfer modelling about stellar systems with debris disks. We present a polarimetric survey, with measurements from the literature, of candidate stars observed by DEBRIS and DUNES $Herschel$ surveys. We perform a statistical analysis of the polarimetric data with the detection of far-infrared excess by $Herschel$ and $Spitzer$ with a sample of 223 stars. Monte Carlo simulations were performed to determine the effects of various model parameters on the polarization level and find the mass required for detection with current instruments. Eighteen stars were detected with a polarization $0.01 le P lesssim 0.1$ per cent and $ge3sigma_P$, but only two of them have a debris disk. No statistically significant difference is found between the different groups of stars, with, without, and unknown status for far-infrared excess, and presence of polarization. The simulations show that the integrated polarization is rather small, usually $< 0.01$ per cent for typical masses detected by their far-infrared excess for hot and most warm disks. Masses observed in cold disks can produce polarization levels above $0.01$ per cent since there is usually more dust in them than in closer disks. We list five factors which can explain the observed low-polarization detection rate. Observations with high-precision polarimeters should lead to additional constraints on models of unresolved debris disks.
The majority of debris discs discovered so far have only been detected through infrared excess emission above stellar photospheres. While disc properties can be inferred from unresolved photometry alone under various assumptions for the physical properties of dust grains, there is a degeneracy between disc radius and dust temperature that depends on the grain size distribution and optical properties. By resolving the disc we can measure the actual location of the dust. The launch of Herschel, with an angular resolution superior to previous far-infrared telescopes, allows us to spatially resolve more discs and locate the dust directly. Here we present the nine resolved discs around A stars between 20 and 40 pc observed by the DEBRIS survey. We use these data to investigate the disc radii by fitting narrow ring models to images at 70, 100 and 160 {mu}m and by fitting blackbodies to full spectral energy distributions. We do this with the aim of finding an improved way of estimating disc radii for unresolved systems. The ratio between the resolved and blackbody radii varies between 1 and 2.5. This ratio is inversely correlated with luminosity and any remaining discrepancies are most likely explained by differences to the minimum size of grain in the size distribution or differences in composition. We find that three of the systems are well fit by a narrow ring, two systems are borderline cases and the other four likely require wider or multiple rings to fully explain the observations, reflecting the diversity of planetary systems.
The new NIKA2 camera at the IRAM 30m radiotelescope was used to observe three known debris disks in order to constrain the SED of their dust emission in the millimeter wavelength domain. We have found that the spectral index between the two NIKA2 bands (1mm and 2mm) is consistent with the Rayleigh-Jeans regime (lambda^{-2}), unlike the steeper spectra (lambda^{-3}) measured in the submillimeter-wavelength domain for two of the three disks $-$ around the stars Vega and HD107146. We provide a succesful proof of concept to model this spectral inversion in using two populations of dust grains, those smaller and those larger than a grain radius a0 of 0.5mm. This is obtained in breaking the slope of the size distribution and the functional form of the absorption coefficient of the standard model at a0. The third disk - around the star HR8799 - does not exhibit this spectral inversion but is also the youngest.
We present 880 um Submillimeter Array observations of the debris disks around the young solar analogue HD 107146 and the multiple-planet host star HR 8799, at an angular resolution of 3 and 6, respectively. We spatially resolve the inner edge of the disk around HR 8799 for the first time. While the data are not sensitive enough (with rms noise of 1 mJy) to constrain the system geometry, we demonstrate that a model by Su et al. (2009) based on the spectral energy distribution (SED) with an inner radius of 150 AU predicts well the spatially resolved data. Furthermore, by modeling simultaneously the SED and visibilities, we demonstrate that the dust is distributed in a broad (of order 100 AU) annulus rather than a narrow ring. We also model the observed SED and visibilities for the HD 107146 debris disk and generate a model of the dust emission that extends in a broad band between 50 and 170 AU from the star. We perform an a posteriori comparison with existing 1.3 mm CARMA observations and demonstrate that a smooth, axisymmetric model reproduces well all of the available millimeter-wavelength data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا